Tensor-based formulation and nuclear norm regularization for multienergy computed tomography

The development of energy selective, photon counting X-ray detectors allows for a wide range of new possibilities in the area of computed tomographic image formation. Under the assumption of perfect energy resolution, here we propose a tensor-based iterative algorithm that simultaneously reconstruct...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 4 vom: 13. Apr., Seite 1678-93
1. Verfasser: Semerci, Oguz (VerfasserIn)
Weitere Verfasser: Ning Hao, Kilmer, Misha E, Miller, Eric L
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM238061124
003 DE-627
005 20231224112955.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2014.2305840  |2 doi 
028 5 2 |a pubmed24n0793.xml 
035 |a (DE-627)NLM238061124 
035 |a (NLM)24808339 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Semerci, Oguz  |e verfasserin  |4 aut 
245 1 0 |a Tensor-based formulation and nuclear norm regularization for multienergy computed tomography 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.12.2014 
500 |a Date Revised 08.05.2014 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a The development of energy selective, photon counting X-ray detectors allows for a wide range of new possibilities in the area of computed tomographic image formation. Under the assumption of perfect energy resolution, here we propose a tensor-based iterative algorithm that simultaneously reconstructs the X-ray attenuation distribution for each energy. We use a multilinear image model rather than a more standard stacked vector representation in order to develop novel tensor-based regularizers. In particular, we model the multispectral unknown as a three-way tensor where the first two dimensions are space and the third dimension is energy. This approach allows for the design of tensor nuclear norm regularizers, which like its 2D counterpart, is a convex function of the multispectral unknown. The solution to the resulting convex optimization problem is obtained using an alternating direction method of multipliers approach. Simulation results show that the generalized tensor nuclear norm can be used as a standalone regularization technique for the energy selective (spectral) computed tomography problem and when combined with total variation regularization it enhances the regularization capabilities especially at low energy images where the effects of noise are most prominent 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Ning Hao  |e verfasserin  |4 aut 
700 1 |a Kilmer, Misha E  |e verfasserin  |4 aut 
700 1 |a Miller, Eric L  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 4 vom: 13. Apr., Seite 1678-93  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:4  |g day:13  |g month:04  |g pages:1678-93 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2014.2305840  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 4  |b 13  |c 04  |h 1678-93