Robust superpixel tracking

While numerous algorithms have been proposed for object tracking with demonstrated success, it remains a challenging problem for a tracker to handle large appearance change due to factors such as scale, motion, shape deformation, and occlusion. One of the main reasons is the lack of effective image...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 4 vom: 13. Apr., Seite 1639-51
1. Verfasser: Fan Yang (VerfasserIn)
Weitere Verfasser: Huchuan Lu, Ming-Hsuan Yang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM238061086
003 DE-627
005 20231224112955.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2014.2300823  |2 doi 
028 5 2 |a pubmed24n0793.xml 
035 |a (DE-627)NLM238061086 
035 |a (NLM)24808336 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fan Yang  |e verfasserin  |4 aut 
245 1 0 |a Robust superpixel tracking 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.12.2014 
500 |a Date Revised 08.05.2014 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a While numerous algorithms have been proposed for object tracking with demonstrated success, it remains a challenging problem for a tracker to handle large appearance change due to factors such as scale, motion, shape deformation, and occlusion. One of the main reasons is the lack of effective image representation schemes to account for appearance variation. Most of the trackers use high-level appearance structure or low-level cues for representing and matching target objects. In this paper, we propose a tracking method from the perspective of midlevel vision with structural information captured in superpixels. We present a discriminative appearance model based on superpixels, thereby facilitating a tracker to distinguish the target and the background with midlevel cues. The tracking task is then formulated by computing a target-background confidence map, and obtaining the best candidate by maximum a posterior estimate. Experimental results demonstrate that our tracker is able to handle heavy occlusion and recover from drifts. In conjunction with online update, the proposed algorithm is shown to perform favorably against existing methods for object tracking. Furthermore, the proposed algorithm facilitates foreground and background segmentation during tracking 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Huchuan Lu  |e verfasserin  |4 aut 
700 1 |a Ming-Hsuan Yang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 4 vom: 13. Apr., Seite 1639-51  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:4  |g day:13  |g month:04  |g pages:1639-51 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2014.2300823  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 4  |b 13  |c 04  |h 1639-51