Different types of carbon nanotube-based anodes to improve microbial fuel cell performance

The microbial fuel cell (MFC) is an innovative technology for producing electricity directly from biodegradable organic matter using bacteria. Among all the influenceable factors, anode materials play a crucial role in electricity generation. Recently, carbon nanotubes (CNTs) have exhibited promisin...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 69(2014), 9 vom: 02., Seite 1900-10
1. Verfasser: Thepsuparungsikul, N (VerfasserIn)
Weitere Verfasser: Ng, T C, Lefebvre, O, Ng, H Y
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Nanotubes, Carbon
Beschreibung
Zusammenfassung:The microbial fuel cell (MFC) is an innovative technology for producing electricity directly from biodegradable organic matter using bacteria. Among all the influenceable factors, anode materials play a crucial role in electricity generation. Recently, carbon nanotubes (CNTs) have exhibited promising properties as electrode material due to their unique structural, and physical and chemical properties. In this study, the impacts of CNT types in CNT-based anodes were investigated to determine their effect on both efficiency of wastewater treatment and power generation. The CNTs, namely single-walled CNT with carboxyl group (SWCNT), multi-walled CNT with carboxyl group (MWCNT-COOH) and multi-walled CNT with hydroxyl group (MWCNT-OH) were used to fabricate CNT-based anodes by a filtration method. Overall, MWCNTs provided better results than SWCNTs, especially in the presence of the -OH groups. The highest power and treatment efficiencies in MFC were achieved with an anode made of MWCNT-OH filtered on Poreflon membrane; the open circuit voltage attained was 0.75 V and the maximum power density averaged 167 mW/m(2), which was 130% higher than that obtained with plain carbon cloth. In addition, MWCNT-OH is more cost-effective, further suggesting its potential to replace plain carbon cloth generally used for the MFC anode
Beschreibung:Date Completed 10.07.2014
Date Revised 08.05.2014
published: Print
Citation Status MEDLINE
ISSN:0273-1223
DOI:10.2166/wst.2014.102