Unsupervised cell identification on multidimensional X-ray fluorescence datasets

A novel approach to locate, identify and refine positions and whole areas of cell structures based on elemental contents measured by X-ray fluorescence microscopy is introduced. It is shown that, by initializing with only a handful of prototypical cell regions, this approach can obtain consistent id...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of synchrotron radiation. - 1994. - 21(2014), Pt 3 vom: 01. Mai, Seite 568-79
1. Verfasser: Wang, Siwei (VerfasserIn)
Weitere Verfasser: Ward, Jesse, Leyffer, Sven, Wild, Stefan M, Jacobsen, Chris, Vogt, Stefan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Journal of synchrotron radiation
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. X-ray fluorescence microscopy (XFM) cell identification modeling overlapping cells trace element distributions unsupervised object recognition