Effective microorganisms enhance the scavenging capacity of the ascorbate-glutathione cycle in common bean (Phaseolus vulgaris L.) plants grown in salty soils

Copyright © 2014 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 80(2014) vom: 23. Juli, Seite 136-43
1. Verfasser: Talaat, Neveen B (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Ascorbate–glutathione cycle Effective microorganisms Phaseolus vulgaris Plant growth Plant productivity Salinity stress Antioxidants Sodium Chloride 451W47IQ8X mehr... Hydrogen Peroxide BBX060AN9V Oxidoreductases EC 1.- Ascorbate Peroxidases EC 1.11.1.11 NADH, NADPH Oxidoreductases EC 1.6.- monodehydroascorbate reductase (NADH) EC 1.6.5.4 Glutathione Reductase EC 1.8.1.7 glutathione dehydrogenase (ascorbate) EC 1.8.5.1 Glutathione GAN16C9B8O Ascorbic Acid PQ6CK8PD0R
LEADER 01000naa a22002652 4500
001 NLM237584697
003 DE-627
005 20231224111956.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.plaphy.2014.03.035  |2 doi 
028 5 2 |a pubmed24n0792.xml 
035 |a (DE-627)NLM237584697 
035 |a (NLM)24755360 
035 |a (PII)S0981-9428(14)00123-5 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Talaat, Neveen B  |e verfasserin  |4 aut 
245 1 0 |a Effective microorganisms enhance the scavenging capacity of the ascorbate-glutathione cycle in common bean (Phaseolus vulgaris L.) plants grown in salty soils 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.01.2015 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2014 Elsevier Masson SAS. All rights reserved. 
520 |a No information is available regarding effective microorganisms (EM) influence on the enzymatic and non-enzymatic antioxidant defence system involved in the ascorbate-glutathione cycle under saline conditions. Therefore, as a first approach, this article focuses on the contribution of EM to the scavenging capacity of the ascorbate-glutathione cycle in salt-stressed plants. It investigates some mechanisms underlying alleviation of salt toxicity by EM application. Phaseolus vulgaris cv. Nebraska plants were grown under non-saline or saline conditions (2.5 and 5.0 dSm(-1)) with and without EM application. Lipid peroxidation and H2O2 content were significantly increased in response to salinity, while they decreased with EM application in both stressed and non-stressed plants. Activities of ascorbate peroxidase (APX; EC 1.11.1.11) and glutathione reductase (GR; EC 1.6.4.2) increased under saline conditions; these increases were more significant in salt-stressed plants treated by EM. Activities of monodehydroascorbate reductase (MDHAR; EC 1.6.5.4) and dehydroascorbate reductase (DHAR; EC 1.8.5.1) decreased in response to salinity; however, they were significantly increased in stressed plants treated with EM. Ascorbate and glutathione contents were increased with the increasing salt concentration; moreover they further increased in stressed plants treated with EM. Ratios of AsA/DHA and GSH/GSSG decreased under saline conditions, whereas they were significantly increased with EM treatment in the presence or in the absence of soil salinization. The EM treatment detoxified the stress generated by salinity and significantly improved plant growth and productivity. Enhancing the H2O2-scavenging capacity of the ascorbate-glutathione cycle in EM-treated plants may be an efficient mechanism to attenuate the activation of plant defences 
650 4 |a Journal Article 
650 4 |a Ascorbate–glutathione cycle 
650 4 |a Effective microorganisms 
650 4 |a Phaseolus vulgaris 
650 4 |a Plant growth 
650 4 |a Plant productivity 
650 4 |a Salinity stress 
650 7 |a Antioxidants  |2 NLM 
650 7 |a Sodium Chloride  |2 NLM 
650 7 |a 451W47IQ8X  |2 NLM 
650 7 |a Hydrogen Peroxide  |2 NLM 
650 7 |a BBX060AN9V  |2 NLM 
650 7 |a Oxidoreductases  |2 NLM 
650 7 |a EC 1.-  |2 NLM 
650 7 |a Ascorbate Peroxidases  |2 NLM 
650 7 |a EC 1.11.1.11  |2 NLM 
650 7 |a NADH, NADPH Oxidoreductases  |2 NLM 
650 7 |a EC 1.6.-  |2 NLM 
650 7 |a monodehydroascorbate reductase (NADH)  |2 NLM 
650 7 |a EC 1.6.5.4  |2 NLM 
650 7 |a Glutathione Reductase  |2 NLM 
650 7 |a EC 1.8.1.7  |2 NLM 
650 7 |a glutathione dehydrogenase (ascorbate)  |2 NLM 
650 7 |a EC 1.8.5.1  |2 NLM 
650 7 |a Glutathione  |2 NLM 
650 7 |a GAN16C9B8O  |2 NLM 
650 7 |a Ascorbic Acid  |2 NLM 
650 7 |a PQ6CK8PD0R  |2 NLM 
773 0 8 |i Enthalten in  |t Plant physiology and biochemistry : PPB  |d 1991  |g 80(2014) vom: 23. Juli, Seite 136-43  |w (DE-627)NLM098178261  |x 1873-2690  |7 nnns 
773 1 8 |g volume:80  |g year:2014  |g day:23  |g month:07  |g pages:136-43 
856 4 0 |u http://dx.doi.org/10.1016/j.plaphy.2014.03.035  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 80  |j 2014  |b 23  |c 07  |h 136-43