On standard conjugate families for natural exponential families with bounded natural parameter space

Diaconis and Ylvisaker (1979) give necessary conditions for conjugate priors for distributions from the natural exponential family to be proper as well as to have the property of linear posterior expectation of the mean parameter of the family. Their conditions for propriety and linear posterior exp...

Description complète

Détails bibliographiques
Publié dans:Journal of multivariate analysis. - 1998. - 126(2014), 100 vom: 25. Apr., Seite 14-24
Auteur principal: Hornik, Kurt (Auteur)
Autres auteurs: Grün, Bettina
Format: Article
Langue:English
Publié: 2014
Accès à la collection:Journal of multivariate analysis
Sujets:Journal Article Bayesian analysis Conjugate prior Elliptical distribution Exponential family Linear posterior expectation Spherical distribution
LEADER 01000caa a22002652c 4500
001 NLM237520001
003 DE-627
005 20250216224442.0
007 tu
008 231224s2014 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0791.xml 
035 |a (DE-627)NLM237520001 
035 |a (NLM)24748693 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hornik, Kurt  |e verfasserin  |4 aut 
245 1 0 |a On standard conjugate families for natural exponential families with bounded natural parameter space 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 21.10.2021 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Diaconis and Ylvisaker (1979) give necessary conditions for conjugate priors for distributions from the natural exponential family to be proper as well as to have the property of linear posterior expectation of the mean parameter of the family. Their conditions for propriety and linear posterior expectation are also sufficient if the natural parameter space is equal to the set of all [Formula: see text]-dimensional real numbers. In this paper their results are extended to characterize when conjugate priors are proper if the natural parameter space is bounded. For the special case where the natural exponential family is through a spherical probability distribution  [Formula: see text], we show that the proper conjugate priors can be characterized by the behavior of the moment generating function of [Formula: see text] at the boundary of the natural parameter space, or the second-order tail behavior of [Formula: see text]. In addition, we show that if these families are non-regular, then linear posterior expectation never holds. The results for this special case are also extended to natural exponential families through elliptical probability distributions 
650 4 |a Journal Article 
650 4 |a Bayesian analysis 
650 4 |a Conjugate prior 
650 4 |a Elliptical distribution 
650 4 |a Exponential family 
650 4 |a Linear posterior expectation 
650 4 |a Spherical distribution 
700 1 |a Grün, Bettina  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of multivariate analysis  |d 1998  |g 126(2014), 100 vom: 25. Apr., Seite 14-24  |w (DE-627)NLM098253794  |x 0047-259X  |7 nnas 
773 1 8 |g volume:126  |g year:2014  |g number:100  |g day:25  |g month:04  |g pages:14-24 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 126  |j 2014  |e 100  |b 25  |c 04  |h 14-24