Reactivity index based on orbital energies

Copyright © 2014 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 35(2014), 14 vom: 30. Mai, Seite 1093-100
1. Verfasser: Tsuneda, Takao (VerfasserIn)
Weitere Verfasser: Singh, Raman K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article SN2 reactions charge transfer chemical reactivity long-range correction orbital energy gap reaction pathway
LEADER 01000naa a22002652 4500
001 NLM237441500
003 DE-627
005 20231224111650.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.23599  |2 doi 
028 5 2 |a pubmed24n0791.xml 
035 |a (DE-627)NLM237441500 
035 |a (NLM)24740548 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tsuneda, Takao  |e verfasserin  |4 aut 
245 1 0 |a Reactivity index based on orbital energies 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.04.2015 
500 |a Date Revised 22.04.2014 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Copyright © 2014 Wiley Periodicals, Inc. 
520 |a This study shows that the chemical reactivities depend on the orbital energy gaps contributing to the reactions. In the process where a reaction only makes progress through charge transfer with the minimal structural transformation of the reactant, the orbital energy gap gradient (OEGG) between the electron-donating and electron-accepting orbitals is proven to be very low. Using this relation, a normalized reaction diagram is constructed by plotting the normalized orbital energy gap with respect to the normalized intrinsic reaction coordinate. Application of this reaction diagram to 43 fundamental reactions showed that the majority of the forward reactions provide small OEGGs in the initial stages, and therefore, the initial processes of the forward reactions are supposed to proceed only through charge transfer. Conversely, more than 60% of the backward reactions are found to give large OEGGs implying very slow reactions associated with considerable structural transformations. Focusing on the anti-activation-energy reactions, in which the forward reactions have higher barriers than those of the backward ones, most of these reactions are shown to give large OEGGs for the backward reactions. It is also found that the reactions providing large OEGGs in the forward directions inconsistent with the reaction rate constants are classified into SN 2, symmetric, and methyl radical reactions. Interestingly, several large-OEGG reactions are experimentally established to get around the optimum pathways. This indicates that the reactions can take significantly different pathways from the optimum ones provided no charge transfer proceeds spontaneously without the structural transformations of the reactants 
650 4 |a Journal Article 
650 4 |a SN2 reactions 
650 4 |a charge transfer 
650 4 |a chemical reactivity 
650 4 |a long-range correction 
650 4 |a orbital energy gap 
650 4 |a reaction pathway 
700 1 |a Singh, Raman K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 35(2014), 14 vom: 30. Mai, Seite 1093-100  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:35  |g year:2014  |g number:14  |g day:30  |g month:05  |g pages:1093-100 
856 4 0 |u http://dx.doi.org/10.1002/jcc.23599  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2014  |e 14  |b 30  |c 05  |h 1093-100