Group-invariant colour morphology based on frames

Mathematical morphology is a very popular framework for processing binary or grayscale images. One of the key problems in applying this framework to color images is the notorious false color problem. We discuss the nature of this problem and its origins. In doing so, it becomes apparent that the lac...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 3 vom: 05. März, Seite 1276-88
Auteur principal: van de Gronde, Jasper J (Auteur)
Autres auteurs: Roerdink, Jos B T M
Format: Article en ligne
Langue:English
Publié: 2014
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM237280213
003 DE-627
005 20250216215940.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2014.2300816  |2 doi 
028 5 2 |a pubmed25n0790.xml 
035 |a (DE-627)NLM237280213 
035 |a (NLM)24723527 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a van de Gronde, Jasper J  |e verfasserin  |4 aut 
245 1 0 |a Group-invariant colour morphology based on frames 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.10.2014 
500 |a Date Revised 11.04.2014 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Mathematical morphology is a very popular framework for processing binary or grayscale images. One of the key problems in applying this framework to color images is the notorious false color problem. We discuss the nature of this problem and its origins. In doing so, it becomes apparent that the lack of invariance of operators to certain transformations (forming a group) plays an important role. The main culprits are the basic join and meet operations, and the associated lattice structure that forms the theoretical basis for mathematical morphology. We show how a lattice that is not group invariant can be related to another lattice that is. When all transformations in a group are linear, these lattices can be related to one another via the theory of frames. This provides all the machinery to let us transform any (grayscale or color) morphological filter into a group-invariant filter on grayscale or color images. We then demonstrate the potential for both subjective and objective improvement in selected tasks 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Roerdink, Jos B T M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 3 vom: 05. März, Seite 1276-88  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:23  |g year:2014  |g number:3  |g day:05  |g month:03  |g pages:1276-88 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2014.2300816  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 3  |b 05  |c 03  |h 1276-88