Does deblurring improve geometrical hyperspectral unmixing?

In this paper, we consider hyperspectral unmixing problems where the observed images are blurred during the acquisition process, e.g., in microscopy and spectroscopy. We derive a joint observation and mixing model and show how it affects end-member identifiability within the geometrical unmixing fra...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 3 vom: 05. März, Seite 1169-80
1. Verfasser: Henrot, Simon (VerfasserIn)
Weitere Verfasser: Soussen, Charles, Dossot, Manuel, Brie, David
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:In this paper, we consider hyperspectral unmixing problems where the observed images are blurred during the acquisition process, e.g., in microscopy and spectroscopy. We derive a joint observation and mixing model and show how it affects end-member identifiability within the geometrical unmixing framework. An analysis of the model reveals that nonnegative blurring results in a contraction of both the minimum-volume enclosing and maximum-volume enclosed simplex. We demonstrate this contraction property in the case of a spectrally invariant point-spread function. The benefit of prior deconvolution on the accuracy of the restored sources and abundances is illustrated using simulated and real Raman spectroscopic data
Beschreibung:Date Completed 28.10.2014
Date Revised 11.04.2014
published: Print
Citation Status MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2014.2300822