Photosynthesis of C3, C3-C4, and C4 grasses at glacial CO2

© The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 65(2014), 13 vom: 05. Juli, Seite 3669-81
1. Verfasser: Pinto, Harshini (VerfasserIn)
Weitere Verfasser: Sharwood, Robert E, Tissue, David T, Ghannoum, Oula
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't C3, C3–C4, and C4 photosynthesis NAD-ME NADP-ME PEP-CK PEPC Rubisco glacial CO2 water and nitrogen use efficiency. mehr... Plant Proteins Water 059QF0KO0R Carbon Dioxide 142M471B3J Malate Dehydrogenase EC 1.1.1.37 malate dehydrogenase-(oxaloacetate-decarboxylating) (NAD+) EC 1.1.1.38 malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+) EC 1.1.1.40 Phosphoenolpyruvate Carboxylase EC 4.1.1.31 Ribulose-Bisphosphate Carboxylase EC 4.1.1.39 Phosphoenolpyruvate Carboxykinase (ATP) EC 4.1.1.49 Nitrogen N762921K75
LEADER 01000caa a22002652 4500
001 NLM237279207
003 DE-627
005 20250216215928.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1093/jxb/eru155  |2 doi 
028 5 2 |a pubmed25n0790.xml 
035 |a (DE-627)NLM237279207 
035 |a (NLM)24723409 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pinto, Harshini  |e verfasserin  |4 aut 
245 1 0 |a Photosynthesis of C3, C3-C4, and C4 grasses at glacial CO2 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 26.02.2015 
500 |a Date Revised 21.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. 
520 |a Most physiology comparisons of C3 and C4 plants are made under current or elevated concentrations of atmospheric CO2 which do not reflect the low CO2 environment under which C4 photosynthesis has evolved. Accordingly, photosynthetic nitrogen (PNUE) and water (PWUE) use efficiency, and the activity of the photosynthetic carboxylases [Rubisco and phosphoenolpyruvate carboxylase (PEPC)] and decarboxylases [NADP-malic enzyme (NADP-ME) and phosphoenolpyruvate carboxykinase (PEP-CK)] were compared in eight C4 grasses with NAD-ME, PCK, and NADP-ME subtypes, one C3 grass, and one C3-C4 grass grown under ambient (400 μl l(-1)) and glacial (180 μl l(-1)) CO2. Glacial CO2 caused a smaller reduction of photosynthesis and a greater increase of stomatal conductance in C4 relative to C3 and C3-C4 species. Panicum bisulcatum (C3) acclimated to glacial [CO2] by doubling Rubisco activity, while Rubisco was unchanged in Panicum milioides (C3-C4), possibly due to its high leaf N and Rubisco contents. Glacial CO2 up-regulated Rubisco and PEPC activities in concert for several C4 grasses, while NADP-ME and PEP-CK activities were unchanged, reflecting the high control exerted by the carboxylases relative to the decarboxylases on the efficiency of C4 metabolism. Despite having larger stomatal conductance at glacial CO2, C4 species maintained greater PWUE and PNUE relative to C3-C4 and C3 species due to higher photosynthetic rates. Relative to other C4 subtypes, NAD-ME and PEP-CK grasses had the highest PWUE and PNUE, respectively; relative to C3, the C3-C4 grass had higher PWUE and similar PNUE at glacial CO2. Biomass accumulation was reduced by glacial CO2 in the C3 grass relative to the C3-C4 grass, while biomass was less reduced in NAD-ME grasses compared with NADP-ME and PCK grasses. Under glacial CO2, high resource use efficiency offers a key evolutionary advantage for the transition from C3 to C4 photosynthesis in water- and nutrient-limited environments 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a C3, C3–C4, and C4 photosynthesis 
650 4 |a NAD-ME 
650 4 |a NADP-ME 
650 4 |a PEP-CK 
650 4 |a PEPC 
650 4 |a Rubisco 
650 4 |a glacial CO2 
650 4 |a water and nitrogen use efficiency. 
650 7 |a Plant Proteins  |2 NLM 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
650 7 |a Carbon Dioxide  |2 NLM 
650 7 |a 142M471B3J  |2 NLM 
650 7 |a Malate Dehydrogenase  |2 NLM 
650 7 |a EC 1.1.1.37  |2 NLM 
650 7 |a malate dehydrogenase-(oxaloacetate-decarboxylating) (NAD+)  |2 NLM 
650 7 |a EC 1.1.1.38  |2 NLM 
650 7 |a malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+)  |2 NLM 
650 7 |a EC 1.1.1.40  |2 NLM 
650 7 |a Phosphoenolpyruvate Carboxylase  |2 NLM 
650 7 |a EC 4.1.1.31  |2 NLM 
650 7 |a Ribulose-Bisphosphate Carboxylase  |2 NLM 
650 7 |a EC 4.1.1.39  |2 NLM 
650 7 |a Phosphoenolpyruvate Carboxykinase (ATP)  |2 NLM 
650 7 |a EC 4.1.1.49  |2 NLM 
650 7 |a Nitrogen  |2 NLM 
650 7 |a N762921K75  |2 NLM 
700 1 |a Sharwood, Robert E  |e verfasserin  |4 aut 
700 1 |a Tissue, David T  |e verfasserin  |4 aut 
700 1 |a Ghannoum, Oula  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of experimental botany  |d 1985  |g 65(2014), 13 vom: 05. Juli, Seite 3669-81  |w (DE-627)NLM098182706  |x 1460-2431  |7 nnns 
773 1 8 |g volume:65  |g year:2014  |g number:13  |g day:05  |g month:07  |g pages:3669-81 
856 4 0 |u http://dx.doi.org/10.1093/jxb/eru155  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 65  |j 2014  |e 13  |b 05  |c 07  |h 3669-81