Chronic fluoxetine treatment suppresses plasticity (long-term potentiation) in the mature rodent primary auditory cortex in vivo

Several recent studies have provided evidence that chronic treatment with the selective serotonin reuptake inhibitor (SSRI) fluoxetine can facilitate synaptic plasticity (e.g., ocular dominance shifts) in the adult central nervous system. Here, we assessed whether fluoxetine enhances long-term poten...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Neural plasticity. - 1998. - 2014(2014) vom: 06., Seite 571285
1. Verfasser: Dringenberg, Hans C (VerfasserIn)
Weitere Verfasser: Branfield Day, Leora R, Choi, Deanna H
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Neural plasticity
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Antidepressive Agents, Second-Generation Serotonin Uptake Inhibitors Fluoxetine 01K63SUP8D
Beschreibung
Zusammenfassung:Several recent studies have provided evidence that chronic treatment with the selective serotonin reuptake inhibitor (SSRI) fluoxetine can facilitate synaptic plasticity (e.g., ocular dominance shifts) in the adult central nervous system. Here, we assessed whether fluoxetine enhances long-term potentiation (LTP) in the thalamocortical auditory system of mature rats, a developmentally regulated form of plasticity that shows a characteristic decline during postnatal life. Adult rats were chronically treated with fluoxetine (administered in the drinking water, 0.2 mg/mL, four weeks of treatment). Electrophysiological assessments were conducted using an anesthetized (urethane) in vivo preparation, with LTP of field potentials in the primary auditory cortex (A1) induced by theta-burst stimulation of the medial geniculate nucleus. We find that, compared to water-treated control animals, fluoxetine-treated rats did not express higher levels of LTP and, in fact, exhibited reduced levels of potentiation at presumed intracortical A1 synapses. Bioactivity of fluoxetine was confirmed by a reduction of weight gain and fluid intake during the four-week treatment period. We conclude that chronic fluoxetine treatment fails to enhance LTP in the mature rodent thalamocortical auditory system, results that bring into question the notion that SSRIs act as general facilitators of synaptic plasticity in the mammalian forebrain
Beschreibung:Date Completed 06.10.2014
Date Revised 26.05.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1687-5443
DOI:10.1155/2014/571285