Expansion of banana (Musa acuminata) gene families involved in ethylene biosynthesis and signalling after lineage-specific whole-genome duplications

© 2014 CIRAD New Phytologist © 2014 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 202(2014), 3 vom: 09. Mai, Seite 986-1000
1. Verfasser: Jourda, Cyril (VerfasserIn)
Weitere Verfasser: Cardi, Céline, Mbéguié-A-Mbéguié, Didier, Bocs, Stéphanie, Garsmeur, Olivier, D'Hont, Angélique, Yahiaoui, Nabila
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Musa acuminata banana ethylene fruit ripening gene families whole-genome duplication Ethylenes 91GW059KN7 mehr... Lyases EC 4.- 1-aminocyclopropanecarboxylate synthase EC 4.4.1.14
Beschreibung
Zusammenfassung:© 2014 CIRAD New Phytologist © 2014 New Phytologist Trust.
Whole-genome duplications (WGDs) are widespread in plants, and three lineage-specific WGDs occurred in the banana (Musa acuminata) genome. Here, we analysed the impact of WGDs on the evolution of banana gene families involved in ethylene biosynthesis and signalling, a key pathway for banana fruit ripening. Banana ethylene pathway genes were identified using comparative genomics approaches and their duplication modes and expression profiles were analysed. Seven out of 10 banana ethylene gene families evolved through WGD and four of them (1-aminocyclopropane-1-carboxylate synthase (ACS), ethylene-insensitive 3-like (EIL), ethylene-insensitive 3-binding F-box (EBF) and ethylene response factor (ERF)) were preferentially retained. Banana orthologues of AtEIN3 and AtEIL1, two major genes for ethylene signalling in Arabidopsis, were particularly expanded. This expansion was paralleled by that of EBF genes which are responsible for control of EIL protein levels. Gene expression profiles in banana fruits suggested functional redundancy for several MaEBF and MaEIL genes derived from WGD and subfunctionalization for some of them. We propose that EIL and EBF genes were co-retained after WGD in banana to maintain balanced control of EIL protein levels and thus avoid detrimental effects of constitutive ethylene signalling. In the course of evolution, subfunctionalization was favoured to promote finer control of ethylene signalling
Beschreibung:Date Completed 01.12.2014
Date Revised 23.04.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.12710