Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 26(2014), 29 vom: 06. Aug., Seite 4961-4966
1. Verfasser: Wang, Jianglin (VerfasserIn)
Weitere Verfasser: Yang, Mingying, Zhu, Ye, Wang, Lin, Tomsia, Antoni P, Mao, Chuanbin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. 3D printing bone regeneration nanofibers phage display scaffolds Biocompatible Materials mehr... Oligopeptides arginyl-glycyl-aspartic acid 78VO7F77PN
LEADER 01000caa a22002652 4500
001 NLM237164264
003 DE-627
005 20250216213852.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201400154  |2 doi 
028 5 2 |a pubmed25n0790.xml 
035 |a (DE-627)NLM237164264 
035 |a (NLM)24711251 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Jianglin  |e verfasserin  |4 aut 
245 1 0 |a Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 31.08.2015 
500 |a Date Revised 10.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a A virus-activated matrix is developed to overcome the challenge of forming vascularized bone tissue. It is generated by filling a 3D printed bioceramic scaffold with phage nanofibers displaying high-density RGD peptide. After it is seeded with mesenchymal stem cells (MSCs) and implanted into a bone defect, the phage nanofibers induce osteogenesis and angiogenesis by activating endothelialization and osteogenic differentiation of MSCs 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a 3D printing 
650 4 |a bone regeneration 
650 4 |a nanofibers 
650 4 |a phage display 
650 4 |a scaffolds 
650 7 |a Biocompatible Materials  |2 NLM 
650 7 |a Oligopeptides  |2 NLM 
650 7 |a arginyl-glycyl-aspartic acid  |2 NLM 
650 7 |a 78VO7F77PN  |2 NLM 
700 1 |a Yang, Mingying  |e verfasserin  |4 aut 
700 1 |a Zhu, Ye  |e verfasserin  |4 aut 
700 1 |a Wang, Lin  |e verfasserin  |4 aut 
700 1 |a Tomsia, Antoni P  |e verfasserin  |4 aut 
700 1 |a Mao, Chuanbin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 26(2014), 29 vom: 06. Aug., Seite 4961-4966  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:26  |g year:2014  |g number:29  |g day:06  |g month:08  |g pages:4961-4966 
856 4 0 |u http://dx.doi.org/10.1002/adma.201400154  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2014  |e 29  |b 06  |c 08  |h 4961-4966