Images as occlusions of textures : a framework for segmentation

We propose a new mathematical and algorithmic framework for unsupervised image segmentation, which is a critical step in a wide variety of image processing applications. We have found that most existing segmentation methods are not successful on histopathology images, which prompted us to investigat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 5 vom: 07. Mai, Seite 2033-46
1. Verfasser: McCann, Michael T (VerfasserIn)
Weitere Verfasser: Mixon, Dustin G, Fickus, Matthew C, Castro, Carlos A, Ozolek, John A, Kovacevic, Jelena
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM237156261
003 DE-627
005 20231224111051.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2014.2307475  |2 doi 
028 5 2 |a pubmed24n0790.xml 
035 |a (DE-627)NLM237156261 
035 |a (NLM)24710403 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a McCann, Michael T  |e verfasserin  |4 aut 
245 1 0 |a Images as occlusions of textures  |b a framework for segmentation 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.09.2015 
500 |a Date Revised 08.04.2014 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We propose a new mathematical and algorithmic framework for unsupervised image segmentation, which is a critical step in a wide variety of image processing applications. We have found that most existing segmentation methods are not successful on histopathology images, which prompted us to investigate segmentation of a broader class of images, namely those without clear edges between the regions to be segmented. We model these images as occlusions of random images, which we call textures, and show that local histograms are a useful tool for segmenting them. Based on our theoretical results, we describe a flexible segmentation framework that draws on existing work on nonnegative matrix factorization and image deconvolution. Results on synthetic texture mosaics and real histology images show the promise of the method 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Mixon, Dustin G  |e verfasserin  |4 aut 
700 1 |a Fickus, Matthew C  |e verfasserin  |4 aut 
700 1 |a Castro, Carlos A  |e verfasserin  |4 aut 
700 1 |a Ozolek, John A  |e verfasserin  |4 aut 
700 1 |a Kovacevic, Jelena  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 5 vom: 07. Mai, Seite 2033-46  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:5  |g day:07  |g month:05  |g pages:2033-46 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2014.2307475  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 5  |b 07  |c 05  |h 2033-46