Thermodynamic theory explains the temperature optima of soil microbial processes and high Q10 values at low temperatures

© 2014 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 20(2014), 11 vom: 13. Nov., Seite 3578-86
1. Verfasser: Schipper, Louis A (VerfasserIn)
Weitere Verfasser: Hobbs, Joanne K, Rutledge, Susanna, Arcus, Vickery L
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't MMRT Q10 macromolecular rate theory respiration soil temperature optimum temperature sensitivity Soil
LEADER 01000caa a22002652 4500
001 NLM237118181
003 DE-627
005 20250216213039.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.12596  |2 doi 
028 5 2 |a pubmed25n0790.xml 
035 |a (DE-627)NLM237118181 
035 |a (NLM)24706438 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Schipper, Louis A  |e verfasserin  |4 aut 
245 1 0 |a Thermodynamic theory explains the temperature optima of soil microbial processes and high Q10 values at low temperatures 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.07.2015 
500 |a Date Revised 16.11.2017 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2014 John Wiley & Sons Ltd. 
520 |a Our current understanding of the temperature response of biological processes in soil is based on the Arrhenius equation. This predicts an exponential increase in rate as temperature rises, whereas in the laboratory and in the field, there is always a clearly identifiable temperature optimum for all microbial processes. In the laboratory, this has been explained by denaturation of enzymes at higher temperatures, and in the field, the availability of substrates and water is often cited as critical factors. Recently, we have shown that temperature optima for enzymes and microbial growth occur in the absence of denaturation and that this is a consequence of the unusual heat capacity changes associated with enzymes. We have called this macromolecular rate theory - MMRT (Hobbs et al., , ACS Chem. Biol. 8:2388). Here, we apply MMRT to a wide range of literature data on the response of soil microbial processes to temperature with a focus on respiration but also including different soil enzyme activities, nitrogen and methane cycling. Our theory agrees closely with a wide range of experimental data and predicts temperature optima for these microbial processes. MMRT also predicted high relative temperature sensitivity (as assessed by Q10 calculations) at low temperatures and that Q10 declined as temperature increases in agreement with data synthesis from the literature. Declining Q10 and temperature optima in soils are coherently explained by MMRT which is based on thermodynamics and heat capacity changes for enzyme-catalysed rates. MMRT also provides a new perspective, and makes new predictions, regarding the absolute temperature sensitivity of ecosystems - a fundamental component of models for climate change 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a MMRT 
650 4 |a Q10 
650 4 |a macromolecular rate theory 
650 4 |a respiration 
650 4 |a soil 
650 4 |a temperature optimum 
650 4 |a temperature sensitivity 
650 7 |a Soil  |2 NLM 
700 1 |a Hobbs, Joanne K  |e verfasserin  |4 aut 
700 1 |a Rutledge, Susanna  |e verfasserin  |4 aut 
700 1 |a Arcus, Vickery L  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 20(2014), 11 vom: 13. Nov., Seite 3578-86  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:20  |g year:2014  |g number:11  |g day:13  |g month:11  |g pages:3578-86 
856 4 0 |u http://dx.doi.org/10.1111/gcb.12596  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 20  |j 2014  |e 11  |b 13  |c 11  |h 3578-86