Artificial neural network modelling in biological removal of organic carbon and nitrogen for the treatment of slaughterhouse wastewater in a batch reactor

Wastewater containing high concentration of oxygen-demanding carbonaceous organics and nitrogenous materials (chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN)) as nutrients emanated from small- to large-scale slaughterhouse units cause depletion of dissolved oxygen in water bodies and...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Environmental technology. - 1998. - 35(2014), 9-12 vom: 01. Mai, Seite 1296-306
1. Verfasser: Kundu, Pradyut (VerfasserIn)
Weitere Verfasser: Debsarkar, Anupam, Mukherjee, Somnath, Kumar, Sunil
Format: Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Environmental technology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Organic Chemicals Waste Water Nitrogen N762921K75
LEADER 01000caa a22002652 4500
001 NLM237074702
003 DE-627
005 20250216212226.0
007 tu
008 231224s2014 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0790.xml 
035 |a (DE-627)NLM237074702 
035 |a (NLM)24701927 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kundu, Pradyut  |e verfasserin  |4 aut 
245 1 0 |a Artificial neural network modelling in biological removal of organic carbon and nitrogen for the treatment of slaughterhouse wastewater in a batch reactor 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 05.05.2014 
500 |a Date Revised 07.12.2022 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Wastewater containing high concentration of oxygen-demanding carbonaceous organics and nitrogenous materials (chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN)) as nutrients emanated from small- to large-scale slaughterhouse units cause depletion of dissolved oxygen in water bodies and attributes to the threat of eutrophication. Biological treatment of wastewater is a useful tool through ages for the treatment of wastewater owing to its cost-effectiveness, reliability along with its innocuous output features. This paper deals with the treatment of slaughter house wastewater by conducting a laboratory scale batch reactor with different input characterized samples, and the experimental results were explored for the formulation of feed-forward back-propagation artificial neural network (ANN) to predict the combined removal of COD and TKN. The ANN modelling was carried out using neural network tool box of MATLAB (version 7.0), with the Levenberg-Marquardt training algorithm. Various trials were examined for the training of the ANN model using the number of neurons in the hidden layer varying from 2 to 30. The mean square error function and regression analysis were also applied for performance analysis of the ANN model. All the input data were logged-in after carrying out detailed experiment in the laboratory with a view to examine the performance of the batch reactor for the treatment of slaughterhouse wastewater. The experimental results were used for testing and validating the ANN model 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Organic Chemicals  |2 NLM 
650 7 |a Waste Water  |2 NLM 
650 7 |a Nitrogen  |2 NLM 
650 7 |a N762921K75  |2 NLM 
700 1 |a Debsarkar, Anupam  |e verfasserin  |4 aut 
700 1 |a Mukherjee, Somnath  |e verfasserin  |4 aut 
700 1 |a Kumar, Sunil  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Environmental technology  |d 1998  |g 35(2014), 9-12 vom: 01. Mai, Seite 1296-306  |w (DE-627)NLM098202545  |x 0959-3330  |7 nnns 
773 1 8 |g volume:35  |g year:2014  |g number:9-12  |g day:01  |g month:05  |g pages:1296-306 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2014  |e 9-12  |b 01  |c 05  |h 1296-306