Structure and dynamics of single hydrophobic/ionic heteropolymers at the vapor-liquid interface of water

We focus on the conformational stability, structure, and dynamics of hydrophobic/charged homopolymers and heteropolymers at the vapor-liquid interface of water using extensive molecular dynamics simulations. Hydrophobic polymers collapse into globular structures in bulk water but unfold and sample a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 30(2014), 16 vom: 29. Apr., Seite 4654-61
1. Verfasser: Vembanur, Srivathsan (VerfasserIn)
Weitere Verfasser: Venkateshwaran, Vasudevan, Garde, Shekhar
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Polymers Water 059QF0KO0R
Beschreibung
Zusammenfassung:We focus on the conformational stability, structure, and dynamics of hydrophobic/charged homopolymers and heteropolymers at the vapor-liquid interface of water using extensive molecular dynamics simulations. Hydrophobic polymers collapse into globular structures in bulk water but unfold and sample a broad range of conformations at the vapor-liquid interface of water. We show that adding a pair of charges to a hydrophobic polymer at the interface can dramatically change its conformations, stabilizing hairpinlike structures, with molecular details depending on the location of the charged pair in the sequence. The translational dynamics of homopolymers and heteropolymers are also different, whereas the homopolymers skate on the interface with low drag, the tendency of charged groups to remain hydrated pulls the heteropolymers toward the liquid side of the interface, thus pinning them, increasing drag, and slowing the translational dynamics. The conformational dynamics of heteropolymers are also slower than that of the homopolymer and depend on the location of the charged groups in the sequence. Conformational dynamics are most restricted for the end-charged heteropolymer and speed up as the charge pair is moved toward the center of the sequence. We rationalize these trends using the fundamental understanding of the effects of the interface on primitive pair-level interactions between two hydrophobic groups and between oppositely charged ions in its vicinity
Beschreibung:Date Completed 15.04.2015
Date Revised 29.04.2014
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la500237u