Nonlinear transform for robust dense block-based motion estimation

We present a noniterative multiresolution motion estimation strategy, involving block-based comparisons in each detail band of a Laplacian pyramid. A novel matching score is developed and analyzed. The proposed matching score is based on a class of nonlinear transformations of Laplacian detail bands...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 5 vom: 01. Mai, Seite 2222-34
1. Verfasser: Xu, Rui (VerfasserIn)
Weitere Verfasser: Taubman, David, Naman, Aous Thabit
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:We present a noniterative multiresolution motion estimation strategy, involving block-based comparisons in each detail band of a Laplacian pyramid. A novel matching score is developed and analyzed. The proposed matching score is based on a class of nonlinear transformations of Laplacian detail bands, yielding 1-bit or 2-bit representations. The matching score is evaluated in a dense full-search motion estimation setting, with synthetic video frames and an optical flow data set. Together with a strategy for combining the matching scores across resolutions, the proposed method is shown to produce smoother and more robust estimates than mean square error (MSE) in each detail band and combined. It tolerates more of nontranslational motion, such as rotation, validating the analysis, while providing much better localization of the motion discontinuities. We also provide an efficient implementation of the motion estimation strategy and show that the computational complexity of the approach is closely related to the traditional MSE block-based full-search motion estimation procedure
Beschreibung:Date Completed 30.03.2015
Date Revised 11.04.2014
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2014.2314023