Mechanical properties of self-assembled Fmoc-diphenylalanine molecular gels

We explore the phase diagram and mechanical properties of molecular gels produced from mixing water with a dimethyl sulfoxide (DMSO) solution of the aromatic dipeptide derivative fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF). Highly soluble in DMSO, Fmoc-FF assembles into fibrous networks that...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 30(2014), 15 vom: 22. Apr., Seite 4493-500
1. Verfasser: Dudukovic, Nikola A (VerfasserIn)
Weitere Verfasser: Zukoski, Charles F
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Dipeptides Fluorenes Gels phenylalanylphenylalanine 2577-40-4 Phenylalanine 47E5O17Y3R Dimethyl Sulfoxide YOW8V9698H
Beschreibung
Zusammenfassung:We explore the phase diagram and mechanical properties of molecular gels produced from mixing water with a dimethyl sulfoxide (DMSO) solution of the aromatic dipeptide derivative fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF). Highly soluble in DMSO, Fmoc-FF assembles into fibrous networks that form gels upon addition of water. At high water concentrations, rigid gels can be formed at Fmoc-FF concentrations as low as 0.01 wt %. The conditions are established defining the Fmoc-FF and water concentrations at which gels are formed. Below the gel boundary, the solutions are clear and colorless and have long-term stability. Above the gel boundary, gels are formed with increasing rapidity with increasing water or Fmoc-FF concentrations. A systematic characterization of the effect of Fmoc-FF and water concentrations on the mechanical properties of the gels is presented, demonstrating that the elastic behavior of the gels follows a specific, robust scaling with Fmoc-FF volume fraction. Furthermore, we characterize the kinetics of gelation and demonstrate that these gels are reversible in the sense that they can be disrupted mechanically and rebuild strength over time
Beschreibung:Date Completed 15.04.2015
Date Revised 03.12.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la500589f