Anion-based pH responsive ionic liquids : design, synthesis, and reversible self-assembling structural changes in aqueous solution

The creation of pH responsive materials that undergo morphological transitions between micelle and vesicle induced by solution pH change is of great importance for their potential application in drug delivery and biochemical engineering. Here, we have developed a series of 18 pH responsive ionic liq...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 30(2014), 14 vom: 15. Apr., Seite 3971-8
1. Verfasser: Wang, Huiyong (VerfasserIn)
Weitere Verfasser: Tan, Bo, Wang, Jianji, Li, Zhiyong, Zhang, Suojiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The creation of pH responsive materials that undergo morphological transitions between micelle and vesicle induced by solution pH change is of great importance for their potential application in drug delivery and biochemical engineering. Here, we have developed a series of 18 pH responsive ionic liquids composed of 1-alkyl-3-methylimidazolium cation, [C(n)mim](+) (n = 4, 6, 8, 10, 12, 14), and different pH responsive anions such as potassium phthalic acid ([C6H4COOKCOO](-)), sodium sulfosalicylic acid ([C6H3OHCOOSO3Na](-)), and sodium m-carboxylbenzenesulfonate ([C6H4COOSO3Na](-)). The aggregation behavior and self-assembly structures of the ILs in aqueous solution have been investigated by surface tension, dynamic light scattering, transmission electron microscopy, small-angle X-ray scattering, and nuclear magnetic resonance spectroscopy. It was found for the first time that single tail ionic liquids, [C(n)mim]X (n = 12 and 14, X = [C6H4COOKCOO], [C6H3OHCOOSO3Na], and [C6H4COOSO3Na]) could form vesicles without any additives, and reversible transition was observed between spherical micelles and vesicles with the change of solution pH value. The transition in self-assembly structures is suggested to be driven by the variation in molecular structure and hydrophilicity/hydrophobicity of anions of the ILs
Beschreibung:Date Completed 10.04.2015
Date Revised 15.04.2014
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la500030k