State-of-the-art RF signal generation from optical frequency division
We present the design of a novel, ultralow-phase-noise frequency synthesizer implemented with extremely-low-noise regenerative frequency dividers. This synthesizer generates eight outputs, viz. 1.6 GHz, 320 MHz, 160 MHz, 80 MHz, 40 MHz, 20 MHz, 10 MHz and 5 MHz for an 8 GHz input frequency. The resi...
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 60(2013), 9 vom: 28. Sept., Seite 1796-803 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2013
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
Schlagworte: | Journal Article Research Support, U.S. Gov't, Non-P.H.S. |
Zusammenfassung: | We present the design of a novel, ultralow-phase-noise frequency synthesizer implemented with extremely-low-noise regenerative frequency dividers. This synthesizer generates eight outputs, viz. 1.6 GHz, 320 MHz, 160 MHz, 80 MHz, 40 MHz, 20 MHz, 10 MHz and 5 MHz for an 8 GHz input frequency. The residual single-sideband (SSB) phase noises of the synthesizer at 5 and 10 MHz outputs at 1 Hz offset from the carrier are -150 and -145 dBc/Hz, respectively, which are unprecedented phase noise levels. We also report the lowest values of phase noise to date for 5 and 10 MHz RF signals achieved with our synthesizer by dividing an 8 GHz signal generated from an ultra-stable optical-comb-based frequency division. The absolute SSB phase noises achieved for 5 and 10 MHz signals at 1 Hz offset are -150 and -143 dBc/Hz, respectively; at 100 kHz offset, they are -177 and -174 dBc/Hz, respectively. The phase noise of the 5 MHz signal corresponds to a frequency stability of approximately 7.6 × 10(-15) at 1 s averaging time for a measurement bandwidth (BW) of 500 Hz, and the integrated timing jitter over 100 kHz BW is 20 fs |
---|---|
Beschreibung: | Date Completed 18.11.2014 Date Revised 24.03.2014 published: Print Citation Status MEDLINE |
ISSN: | 1525-8955 |
DOI: | 10.1109/TUFFC.2013.2765 |