Predicting combined sewer overflows chamber depth using artificial neural networks with rainfall radar data

Combined sewer overflows (CSOs) represent a common feature in combined urban drainage systems and are used to discharge excess water to the environment during heavy storms. To better understand the performance of CSOs, the UK water industry has installed a large number of monitoring systems that pro...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 69(2014), 6 vom: 19., Seite 1326-33
1. Verfasser: Mounce, S R (VerfasserIn)
Weitere Verfasser: Shepherd, W, Sailor, G, Shucksmith, J, Saul, A J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM236556495
003 DE-627
005 20250216194757.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.2166/wst.2014.024  |2 doi 
028 5 2 |a pubmed25n0788.xml 
035 |a (DE-627)NLM236556495 
035 |a (NLM)24647201 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mounce, S R  |e verfasserin  |4 aut 
245 1 0 |a Predicting combined sewer overflows chamber depth using artificial neural networks with rainfall radar data 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.05.2014 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Combined sewer overflows (CSOs) represent a common feature in combined urban drainage systems and are used to discharge excess water to the environment during heavy storms. To better understand the performance of CSOs, the UK water industry has installed a large number of monitoring systems that provide data for these assets. This paper presents research into the prediction of the hydraulic performance of CSOs using artificial neural networks (ANN) as an alternative to hydraulic models. Previous work has explored using an ANN model for the prediction of chamber depth using time series for depth and rain gauge data. Rainfall intensity data that can be provided by rainfall radar devices can be used to improve on this approach. Results are presented using real data from a CSO for a catchment in the North of England, UK. An ANN model trained with the pseudo-inverse rule was shown to be capable of predicting CSO depth with less than 5% error for predictions more than 1 hour ahead for unseen data. Such predictive approaches are important to the future management of combined sewer systems 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Shepherd, W  |e verfasserin  |4 aut 
700 1 |a Sailor, G  |e verfasserin  |4 aut 
700 1 |a Shucksmith, J  |e verfasserin  |4 aut 
700 1 |a Saul, A J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water science and technology : a journal of the International Association on Water Pollution Research  |d 1986  |g 69(2014), 6 vom: 19., Seite 1326-33  |w (DE-627)NLM098149431  |x 0273-1223  |7 nnas 
773 1 8 |g volume:69  |g year:2014  |g number:6  |g day:19  |g pages:1326-33 
856 4 0 |u http://dx.doi.org/10.2166/wst.2014.024  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 69  |j 2014  |e 6  |b 19  |h 1326-33