|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM23644655X |
003 |
DE-627 |
005 |
20231224105604.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2014 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1093/jxb/eru103
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0788.xml
|
035 |
|
|
|a (DE-627)NLM23644655X
|
035 |
|
|
|a (NLM)24634487
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yamaya, Tomoyuki
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Evidence supporting distinct functions of three cytosolic glutamine synthetases and two NADH-glutamate synthases in rice
|
264 |
|
1 |
|c 2014
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 08.06.2015
|
500 |
|
|
|a Date Revised 19.11.2015
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
|
520 |
|
|
|a The functions of the three isoenzymes of cytosolic glutamine synthetase (GS1;1, GS1;2, and GS1;3) and two NADH-glutamate synthases (NADH-GOGAT1 and NADH-GOGAT2) in rice (Oryza sativa L.) were characterized using a reverse genetics approach and spatial expression of the corresponding genes. OsGS1;2 and OsNADH-GOGAT1 were mainly expressed in surface cells of rice roots in an NH4 (+)-dependent manner. Disruption of either gene by the insertion of endogenous retrotransposon Tos17 caused reduction in active tiller number and hence panicle number at harvest. Re-introduction of OsGS1;2 cDNA under the control of its own promoter into the knockout mutants successfully restored panicle number to wild-type levels. These results indicate that GS1;2 and NADH-GOGAT1 are important in the primary assimilation of NH4 (+) taken up by rice roots. OsGS1;1 and OsNADH-GOGAT2 were mainly expressed in vascular tissues of mature leaf blades. OsGS1;1 mutants showed severe reduction in growth rate and grain filling, whereas OsNADH-GOGAT2 mutants had marked reduction in spikelet number per panicle. Complementation of phenotypes seen in the OsGS1;1 mutant was successfully observed when OsGS1;1 was re-introduced. Thus, these two enzymes could be important in remobilization of nitrogen during natural senescence. Metabolite profiling data showed a crucial role of GS1;1 in coordinating metabolic balance in rice. Expression of OsGS1:3 was spikelet-specific, indicating that it is probably important in grain ripening and/or germination. Thus, these isoenzymes seem to possess distinct and non-overlapping functions and none was able to compensate for the individual function of another
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a Glutamate synthase
|
650 |
|
4 |
|a glutamine synthetase
|
650 |
|
4 |
|a metabolic balance
|
650 |
|
4 |
|a nitrogen utilization
|
650 |
|
4 |
|a physiological function
|
650 |
|
4 |
|a rice.
|
650 |
|
7 |
|a Isoenzymes
|2 NLM
|
650 |
|
7 |
|a Plant Proteins
|2 NLM
|
650 |
|
7 |
|a Glutamate Synthase (NADH)
|2 NLM
|
650 |
|
7 |
|a EC 1.4.1.14
|2 NLM
|
650 |
|
7 |
|a Nitrogen
|2 NLM
|
650 |
|
7 |
|a N762921K75
|2 NLM
|
700 |
1 |
|
|a Kusano, Miyako
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of experimental botany
|d 1985
|g 65(2014), 19 vom: 15. Okt., Seite 5519-25
|w (DE-627)NLM098182706
|x 1460-2431
|7 nnns
|
773 |
1 |
8 |
|g volume:65
|g year:2014
|g number:19
|g day:15
|g month:10
|g pages:5519-25
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1093/jxb/eru103
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 65
|j 2014
|e 19
|b 15
|c 10
|h 5519-25
|