A Bayesian statistical approach of improving knowledge-based scoring functions for protein-ligand interactions

Copyright © 2014 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 35(2014), 12 vom: 05. Mai, Seite 932-43
1. Verfasser: Grinter, Sam Z (VerfasserIn)
Weitere Verfasser: Zou, Xiaoqin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. knowledge-based scoring function ligand interactions molecular docking protein sparse data Ligands Proteins
LEADER 01000naa a22002652 4500
001 NLM236335952
003 DE-627
005 20231224105341.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.23579  |2 doi 
028 5 2 |a pubmed24n0787.xml 
035 |a (DE-627)NLM236335952 
035 |a (NLM)24623011 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Grinter, Sam Z  |e verfasserin  |4 aut 
245 1 2 |a A Bayesian statistical approach of improving knowledge-based scoring functions for protein-ligand interactions 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.11.2014 
500 |a Date Revised 04.04.2014 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2014 Wiley Periodicals, Inc. 
520 |a Knowledge-based scoring functions are widely used for assessing putative complexes in protein-ligand and protein-protein docking and for structure prediction. Even with large training sets, knowledge-based scoring functions face the inevitable problem of sparse data. Here, we have developed a novel approach for handling the sparse data problem that is based on estimating the inaccuracies in knowledge-based scoring functions. This inaccuracy estimation is used to automatically weight the knowledge-based scoring function with an alternative, force-field-based potential (FFP) that does not rely on training data and can, therefore, provide an improved approximation of the interactions between rare chemical groups. The current version of STScore, a protein-ligand scoring function using our method, achieves a binding mode prediction success rate of 91% on the set of 100 complexes by Wang et al., and a binding affinity correlation of 0.514 with the experimentally determined affinities in PDBbind. The method presented here may be used with other FFPs and other knowledge-based scoring functions and can also be applied to protein-protein docking and protein structure prediction 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a knowledge-based scoring function 
650 4 |a ligand interactions 
650 4 |a molecular docking 
650 4 |a protein 
650 4 |a sparse data 
650 7 |a Ligands  |2 NLM 
650 7 |a Proteins  |2 NLM 
700 1 |a Zou, Xiaoqin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 35(2014), 12 vom: 05. Mai, Seite 932-43  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:35  |g year:2014  |g number:12  |g day:05  |g month:05  |g pages:932-43 
856 4 0 |u http://dx.doi.org/10.1002/jcc.23579  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2014  |e 12  |b 05  |c 05  |h 932-43