An investigation of moving bed biofilm reactor nitrification during long-term exposure to cold temperatures

Biological treatment is the most common and economical means of ammonia removal in wastewater; however, nitrification rates can become completely impeded at cold temperatures. Attached growth processes and, specifically, moving bed biofilm reactors (MBBRs) have shown promise with respect to low-temp...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water environment research : a research publication of the Water Environment Federation. - 1998. - 86(2014), 1 vom: 08. Jan., Seite 36-42
1. Verfasser: Hoang, Valerie (VerfasserIn)
Weitere Verfasser: Delatolla, Robert, Laflamme, Edith, Gadbois, Alain
Format: Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Water environment research : a research publication of the Water Environment Federation
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Waste Water Water Pollutants, Chemical Ammonia 7664-41-7
Beschreibung
Zusammenfassung:Biological treatment is the most common and economical means of ammonia removal in wastewater; however, nitrification rates can become completely impeded at cold temperatures. Attached growth processes and, specifically, moving bed biofilm reactors (MBBRs) have shown promise with respect to low-temperature nitrification. In this study, two laboratory MBBRs were used to investigate MBBR nitrification rates at 20, 5, and 1 degree C. Furthermore, the solids detached by the MBBR reactors were investigated and Arrhenius temperature correction models used to predict nitrification rates after long-term low-temperature exposure was evaluated. The nitrification rate at 5 degrees C was 66 +/- 3.9% and 64 +/- 3.7% compared to the rate measured at 20 degrees C for reactors 1 and 2, respectively. The nitrification rates at 1 degree C over a 4-month exposure period compared to the rate at 20 degrees C were 18.7 +/- 5.5% and 15.7 +/- 4.7% for the two reactors. The quantity of solids detached from the MBBR biocarriers was low and the mass of biofilm per carrier did not vary significantly at 20 degrees C compared to that after long-term exposure at 1 degree C. Lastly, a temperature correction model based on exposure time to cold temperatures showed a strong correlation to the calculated ammonia removal rates relative to 20 degrees C following a gradual acclimatization period to cold temperatures
Beschreibung:Date Completed 06.05.2014
Date Revised 07.12.2022
published: Print
Citation Status MEDLINE
ISSN:1554-7531