An investigation of moving bed biofilm reactor nitrification during long-term exposure to cold temperatures
Biological treatment is the most common and economical means of ammonia removal in wastewater; however, nitrification rates can become completely impeded at cold temperatures. Attached growth processes and, specifically, moving bed biofilm reactors (MBBRs) have shown promise with respect to low-temp...
Veröffentlicht in: | Water environment research : a research publication of the Water Environment Federation. - 1998. - 86(2014), 1 vom: 08. Jan., Seite 36-42 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2014
|
Zugriff auf das übergeordnete Werk: | Water environment research : a research publication of the Water Environment Federation |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Waste Water Water Pollutants, Chemical Ammonia 7664-41-7 |
Zusammenfassung: | Biological treatment is the most common and economical means of ammonia removal in wastewater; however, nitrification rates can become completely impeded at cold temperatures. Attached growth processes and, specifically, moving bed biofilm reactors (MBBRs) have shown promise with respect to low-temperature nitrification. In this study, two laboratory MBBRs were used to investigate MBBR nitrification rates at 20, 5, and 1 degree C. Furthermore, the solids detached by the MBBR reactors were investigated and Arrhenius temperature correction models used to predict nitrification rates after long-term low-temperature exposure was evaluated. The nitrification rate at 5 degrees C was 66 +/- 3.9% and 64 +/- 3.7% compared to the rate measured at 20 degrees C for reactors 1 and 2, respectively. The nitrification rates at 1 degree C over a 4-month exposure period compared to the rate at 20 degrees C were 18.7 +/- 5.5% and 15.7 +/- 4.7% for the two reactors. The quantity of solids detached from the MBBR biocarriers was low and the mass of biofilm per carrier did not vary significantly at 20 degrees C compared to that after long-term exposure at 1 degree C. Lastly, a temperature correction model based on exposure time to cold temperatures showed a strong correlation to the calculated ammonia removal rates relative to 20 degrees C following a gradual acclimatization period to cold temperatures |
---|---|
Beschreibung: | Date Completed 06.05.2014 Date Revised 07.12.2022 published: Print Citation Status MEDLINE |
ISSN: | 1554-7531 |