Understanding anisotropic plasma etching of two-dimensional polystyrene opals for advanced materials fabrication
Anisotropic deformation of polystyrene particles in an oxygenated (O2/Ar) plasma is observed for radio frequency (rf) plasma and inductively coupled plasma (ICP). A facile model based on a ratio of completely isotropic and completely anisotropic etching is presented to describe the anisotropy of the...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1985. - 30(2014), 41 vom: 21. Okt., Seite 12354-61 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2014
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Polystyrenes Argon 67XQY1V3KH Oxygen S88TT14065 |
Zusammenfassung: | Anisotropic deformation of polystyrene particles in an oxygenated (O2/Ar) plasma is observed for radio frequency (rf) plasma and inductively coupled plasma (ICP). A facile model based on a ratio of completely isotropic and completely anisotropic etching is presented to describe the anisotropy of the etching process and is implemented to determine the height of the spheroid-shaped polystyrene particles. In our systems, we find the plasma etching to be 54% isotropic in the rf plasma and 79% isotropic in the ICP. With this model, the maximum material deposition thickness for nanofabrication with plasma-etched nanosphere lithography or colloid lithography can be predicted. Moreover, the etching of polystyrene particles in an oxygenated plasma is investigated versus the etching time, gas flow, gas composition, temperature, substrate material, and particle size. The results of this study allow precise shape tuning during the fabrication of nanostructured surfaces with size-dependent properties for bionic, medical, and photonic applications |
---|---|
Beschreibung: | Date Completed 15.06.2015 Date Revised 21.10.2014 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la500003u |