Photosystem I protein films at electrode surfaces for solar energy conversion

Over the course of a few billion years, nature has developed extraordinary nanomaterials for the efficient conversion of solar energy into chemical energy. One of these materials, photosystem I (PSI), functions as a photodiode capable of generating a charge separation with nearly perfect quantum eff...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 30(2014), 37 vom: 23. Sept., Seite 10990-1001
1. Verfasser: LeBlanc, Gabriel (VerfasserIn)
Weitere Verfasser: Gizzie, Evan, Yang, Siyuan, Cliffel, David E, Jennings, G Kane
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Photosystem I Protein Complex
Beschreibung
Zusammenfassung:Over the course of a few billion years, nature has developed extraordinary nanomaterials for the efficient conversion of solar energy into chemical energy. One of these materials, photosystem I (PSI), functions as a photodiode capable of generating a charge separation with nearly perfect quantum efficiency. Because of the favorable properties and natural abundance of PSI, researchers around the world have begun to study how this protein complex can be integrated into modern solar energy conversion devices. This feature article describes some of the recent materials and methods that have led to dramatic improvements (over several orders of magnitude) in the photocurrents and photovoltages of biohybrid electrodes based on PSI, with an emphasis on the research activities in our laboratory
Beschreibung:Date Completed 22.05.2015
Date Revised 23.12.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la500129q