Biomimetic approach for liquid encapsulation with nanofibrillar cloaks

Technologies that are able to handle microvolumes of liquids, such as microfluidics and liquid marbles, are attractive for applications that include miniaturized biological and chemical reactors, sensors, microactuators, and drug delivery systems. Inspired from natural fibrous envelopes, here, we pr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 30(2014), 10 vom: 18. März, Seite 2896-902
1. Verfasser: Mele, Elisa (VerfasserIn)
Weitere Verfasser: Bayer, Ilker S, Nanni, Gabriele, Heredia-Guerrero, José Alejandro, Ruffilli, Roberta, Ayadi, Farouk, Marini, Lara, Cingolani, Roberto, Athanassiou, Athanassia
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Technologies that are able to handle microvolumes of liquids, such as microfluidics and liquid marbles, are attractive for applications that include miniaturized biological and chemical reactors, sensors, microactuators, and drug delivery systems. Inspired from natural fibrous envelopes, here, we present an innovative approach for liquid encapsulation and manipulation using electrospun nanofibers. We demonstrated the realization of non-wetting soft solids consisting of a liquid core wrapped in a hydrophobic fibrillar cloak of a fluoroacrylic copolymer and cellulose acetate. By properly controlling the wetting and mechanical properties of the fibers, we created final architectures with tunable mechanical robustness that were stable on a wide range of substrates (from paper to glass) and floated on liquid surfaces. Remarkably, the realized fiber-coated drops endured vortex mixing in a continuous oil phase at high stirring speed without bursting or water losses, favoring mixing processes inside the entrapped liquid volume. Moreover, the produced cloak can be easily functionalized by incorporating functional particles, active molecules, or drugs inside the nanofibers
Beschreibung:Date Completed 14.11.2014
Date Revised 19.03.2014
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la4048177