Water quality model parameter identification of an open channel in a long distance water transfer project based on finite difference, difference evolution and Monte Carlo

A new method is proposed based on the finite difference method (FDM), differential evolution algorithm and Markov Chain Monte Carlo (MCMC) simulation to identify water quality model parameters of an open channel in a long distance water transfer project. Firstly, this parameter identification proble...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 69(2014), 3 vom: 12., Seite 587-94
1. Verfasser: Shao, Dongguo (VerfasserIn)
Weitere Verfasser: Yang, Haidong, Xiao, Yi, Liu, Biyu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:A new method is proposed based on the finite difference method (FDM), differential evolution algorithm and Markov Chain Monte Carlo (MCMC) simulation to identify water quality model parameters of an open channel in a long distance water transfer project. Firstly, this parameter identification problem is considered as a Bayesian estimation problem and the forward numerical model is solved by FDM, and the posterior probability density function of the parameters is deduced. Then these parameters are estimated using a sampling method with differential evolution algorithm and MCMC simulation. Finally this proposed method is compared with FDM-MCMC by a twin experiment. The results show that the proposed method can be used to identify water quality model parameters of an open channel in a long distance water transfer project under different scenarios better with fewer iterations, higher reliability and anti-noise capability compared with FDM-MCMC. Therefore, it provides a new idea and method to solve the traceability problem in sudden water pollution accidents
Beschreibung:Date Completed 17.04.2014
Date Revised 20.02.2014
published: Print
Citation Status MEDLINE
ISSN:0273-1223
DOI:10.2166/wst.2013.753