A miR169 isoform regulates specific NF-YA targets and root architecture in Arabidopsis
© 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Veröffentlicht in: | The New phytologist. - 1979. - 202(2014), 4 vom: 17. Juni, Seite 1197-1211 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2014
|
Zugriff auf das übergeordnete Werk: | The New phytologist |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Arabidopsis Nuclear Factor Y subunit A (NF-YA) miR169 isoforms mimicry root branching Arabidopsis Proteins CCAAT-Binding Factor MIRN169 microRNA, Arabidopsis mehr... |
Zusammenfassung: | © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust. In plants, roots are essential for water and nutrient acquisition. MicroRNAs (miRNAs) regulate their target mRNAs by transcript cleavage and/or inhibition of protein translation and are known as major post-transcriptional regulators of various developmental pathways and stress responses. In Arabidopsis thaliana, four isoforms of miR169 are encoded by 14 different genes and target diverse mRNAs, encoding subunits A of the NF-Y transcription factor complex. These miRNA isoforms and their targets have previously been linked to nutrient signalling in plants. By using mimicry constructs against different isoforms of miR169 and miR-resistant versions of NF-YA genes we analysed the role of specific miR169 isoforms in root growth and branching. We identified a regulatory node involving the particular miR169defg isoform and NF-YA2 and NF-YA10 genes that acts in the control of primary root growth. The specific expression of MIM169defg constructs altered specific cell type numbers and dimensions in the root meristem. Preventing miR169defg-regulation of NF-YA2 indirectly affected laterial root initiation. We also showed that the miR169defg isoform affects NF-YA2 transcripts both at mRNA stability and translation levels. We propose that a specific miR169 isoform and the NF-YA2 target control root architecture in Arabidopsis |
---|---|
Beschreibung: | Date Completed 15.01.2015 Date Revised 18.03.2022 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1469-8137 |
DOI: | 10.1111/nph.12735 |