|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM235384291 |
003 |
DE-627 |
005 |
20250216163920.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2014 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/la4049117
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0784.xml
|
035 |
|
|
|a (DE-627)NLM235384291
|
035 |
|
|
|a (NLM)24520901
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Lee, Joon-Seok
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Monolithic photonic crystals created by partial coalescence of core-shell particles
|
264 |
|
1 |
|c 2014
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 23.10.2014
|
500 |
|
|
|a Date Revised 11.03.2014
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Colloidal crystals and their derivatives have been intensively studied and developed during the past two decades due to their unique photonic band gap properties. However, complex fabrication procedures and low mechanical stability severely limit their practical uses. Here, we report stable photonic structures created by using colloidal building blocks composed of an inorganic core and an organic shell. The core-shell particles are convectively assembled into an opal structure, which is then subjected to thermal annealing. During the heat treatment, the inorganic cores, which are insensitive to heat, retain their regular arrangement in a face-centered cubic lattice, while the organic shells are partially fused with their neighbors; this forms a monolithic structure with high mechanical stability. The interparticle distance and therefore stop band position are precisely controlled by the annealing time; the distance decreases and the stop band blue shifts during the annealing. The composite films can be further treated to give a high contrast in the refractive index. The inorganic cores are selectively removed from the composite by wet etching, thereby providing an organic film containing regular arrays of air cavities. The high refractive index contrast of the porous structure gives rise to pronounced structural colors and high reflectivity at the stop band position
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Lim, Che Ho
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Seung-Man
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Shin-Hyun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1985
|g 30(2014), 9 vom: 11. März, Seite 2369-75
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:30
|g year:2014
|g number:9
|g day:11
|g month:03
|g pages:2369-75
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/la4049117
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2014
|e 9
|b 11
|c 03
|h 2369-75
|