Partitioning of humic acids between aqueous solution and hydrogel : concentration profiling of humic acids in hydrogel phases

The partitioning of the natural polyelectrolyte humic acid (HA) from an aqueous dispersion into a model biomimetic gel (alginate) and a synthetic polyacrylamide gel (PAAm) is explored. In both gels, the spatial distribution of HA in the gel body, as measured by confocal laser scanning microscopy, is...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 30(2014), 8 vom: 04. März, Seite 2084-92
1. Verfasser: Zielińska, Katarzyna (VerfasserIn)
Weitere Verfasser: Town, Raewyn M, Yasadi, Kamuran, van Leeuwen, Herman P
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The partitioning of the natural polyelectrolyte humic acid (HA) from an aqueous dispersion into a model biomimetic gel (alginate) and a synthetic polyacrylamide gel (PAAm) is explored. In both gels, the spatial distribution of HA in the gel body, as measured by confocal laser scanning microscopy, is markedly nonhomogeneous. A striking feature is the enhanced accumulation of HA in a thin film of thickness ca. 15 μm at the surface of the gel body, resulting in average local concentrations that are, for PAAm and alginate respectively, a factor of 10 and 4 greater than that in the bulk solution. The time dependence of accumulation in the surface film is predominantly controlled by the diffusive supply of HA from the aqueous medium, with a time constant on the order of 10(3) s for both gels. The concentration of HA within the bulk gel body differs significantly from that in the bulk aqueous medium: substantially higher for PAAm but much lower for alginate. The results are significant for understanding the nature and rate of sink/source functioning at permeable phases in contact with aqueous media, e.g., biofilms and gel-like layers at biological interfaces or employed in chemical speciation sensors
Beschreibung:Date Completed 20.10.2014
Date Revised 05.03.2014
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la4050094