Retrieval-based face annotation by weak label regularized local coordinate coding

Auto face annotation, which aims to detect human faces from a facial image and assign them proper human names, is a fundamental research problem and beneficial to many real-world applications. In this work, we address this problem by investigating a retrieval-based annotation scheme of mining massiv...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 36(2014), 3 vom: 07. März, Seite 550-63
1. Verfasser: Wang, Dayong (VerfasserIn)
Weitere Verfasser: Hoi, Steven C H, He, Ying, Zhu, Jianke, Mei, Tao, Luo, Jiebo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM234788704
003 DE-627
005 20231224102019.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2013.145  |2 doi 
028 5 2 |a pubmed24n0782.xml 
035 |a (DE-627)NLM234788704 
035 |a (NLM)24457510 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Dayong  |e verfasserin  |4 aut 
245 1 0 |a Retrieval-based face annotation by weak label regularized local coordinate coding 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.09.2014 
500 |a Date Revised 24.01.2014 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Auto face annotation, which aims to detect human faces from a facial image and assign them proper human names, is a fundamental research problem and beneficial to many real-world applications. In this work, we address this problem by investigating a retrieval-based annotation scheme of mining massive web facial images that are freely available over the Internet. In particular, given a facial image, we first retrieve the top $(n)$ similar instances from a large-scale web facial image database using content-based image retrieval techniques, and then use their labels for auto annotation. Such a scheme has two major challenges: 1) how to retrieve the similar facial images that truly match the query, and 2) how to exploit the noisy labels of the top similar facial images, which may be incorrect or incomplete due to the nature of web images. In this paper, we propose an effective Weak Label Regularized Local Coordinate Coding (WLRLCC) technique, which exploits the principle of local coordinate coding by learning sparse features, and employs the idea of graph-based weak label regularization to enhance the weak labels of the similar facial images. An efficient optimization algorithm is proposed to solve the WLRLCC problem. Moreover, an effective sparse reconstruction scheme is developed to perform the face annotation task. We conduct extensive empirical studies on several web facial image databases to evaluate the proposed WLRLCC algorithm from different aspects. The experimental results validate its efficacy. We share the two constructed databases "WDB" (714,454 images of 6,025 people) and "ADB" (126,070 images of 1,200 people) with the public. To further improve the efficiency and scalability, we also propose an offline approximation scheme (AWLRLCC) which generally maintains comparable results but significantly reduces the annotation time 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Hoi, Steven C H  |e verfasserin  |4 aut 
700 1 |a He, Ying  |e verfasserin  |4 aut 
700 1 |a Zhu, Jianke  |e verfasserin  |4 aut 
700 1 |a Mei, Tao  |e verfasserin  |4 aut 
700 1 |a Luo, Jiebo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 36(2014), 3 vom: 07. März, Seite 550-63  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:36  |g year:2014  |g number:3  |g day:07  |g month:03  |g pages:550-63 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2013.145  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2014  |e 3  |b 07  |c 03  |h 550-63