Filling dynamics of closed end nanocapillaries

We have studied the filling dynamics of model capillaries using dynamic mean field theory for a confined lattice gas and Kawasaki dynamics simulations. We have found two different scenarios for filling of capped nanocapillaries from the vapor phase. As compared to channels with macroscopic width, in...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 30(2014), 5 vom: 11. Feb., Seite 1290-4
1. Verfasser: Schneider, Daniel (VerfasserIn)
Weitere Verfasser: Valiullin, Rustem, Monson, Peter A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
Beschreibung
Zusammenfassung:We have studied the filling dynamics of model capillaries using dynamic mean field theory for a confined lattice gas and Kawasaki dynamics simulations. We have found two different scenarios for filling of capped nanocapillaries from the vapor phase. As compared to channels with macroscopic width, in which the filling process occurs by the detachment of the meniscus from the cap, in mesoscopic channels there is an alternative mechanism associated with the spontaneous condensation of the liquid close to the pore opening and its subsequent growth toward the closed pore end. We show that these two scenarios have totally different filling dynamics, providing an additional mechanism for slow capillary condensation kinetics in nanoscopic objects
Beschreibung:Date Completed 21.10.2014
Date Revised 11.02.2014
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la404456e