Highly stabilized lipase in polyaniline nanofibers for surfactant-mediated esterification of ibuprofen
Lipase (LP) from Candida rugosa was immobilized and stabilized in polyaniline nanofibers (PANFs) via a three-step process of enzyme adsorption, precipitation, and cross-linking, which generates the final immobilization called "EAPC". The activity of EAPC was 5.1 and 5.9 times higher than t...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 30(2014), 3 vom: 28. Jan., Seite 911-5 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2014
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Aniline Compounds Cross-Linking Reagents Enzymes, Immobilized Surface-Active Agents polyaniline Dioctyl Sulfosuccinic Acid 10041-19-7 Lipase mehr... |
Zusammenfassung: | Lipase (LP) from Candida rugosa was immobilized and stabilized in polyaniline nanofibers (PANFs) via a three-step process of enzyme adsorption, precipitation, and cross-linking, which generates the final immobilization called "EAPC". The activity of EAPC was 5.1 and 5.9 times higher than those of LP immobilizations via enzyme adsorption (EA) and enzyme adsorption/cross-linking (EAC), respectively. After incubation in an aqueous buffer under shaking (200 rpm) for 84 days, EAPC maintained 74% of its initial activity, while EA and EAC retained 11 and 24% of their initial activities, respectively. Highly stable and active EAPC was employed for the resolution of racemic ibuprofen via esterification of S-(+)-ibuprofen with 1-propanol in isooctane. The addition of 100 mM dioctyl sulfosuccinate (AOT) into the reaction medium increased the esterification activity by 61-fold, which can be explained by the better dispersion of EAPC in isooctane. EAPC showed 42% conversion in the esterification of racemic ibuprofen after 102 h, whereas EA and EAC showed only 1.2 and 1.4% conversion in the same condition, respectively. The EAPC approach increases both loading and stability of LP, and the combination of EAPC with the surfactant addition can be employed for efficient enzymatic reactions in organic solvents |
---|---|
Beschreibung: | Date Completed 03.09.2014 Date Revised 28.01.2014 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la404189e |