Micropatterned multicolor dynamically adhesive substrates to control cell adhesion and multicellular organization

We present a novel technique to examine cell-cell interactions and directed cell migration using micropatterned substrates of three distinct regions: an adhesive region, a nonadhesive region, and a dynamically adhesive region switched by addition of a soluble factor to the medium. Combining microcon...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 30(2014), 5 vom: 11. Feb., Seite 1327-35
1. Verfasser: Rodriguez, Natalia M (VerfasserIn)
Weitere Verfasser: Desai, Ravi A, Trappmann, Britta, Baker, Brendon M, Chen, Christopher S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Adhesives Fibronectins Fluorescent Dyes
Beschreibung
Zusammenfassung:We present a novel technique to examine cell-cell interactions and directed cell migration using micropatterned substrates of three distinct regions: an adhesive region, a nonadhesive region, and a dynamically adhesive region switched by addition of a soluble factor to the medium. Combining microcontact printing with avidin-biotin capture chemistry, we pattern nonadhesive regions of avidin that become adhesive through the capture of biotinylated fibronectin. Our strategy overcomes several limitations of current two-color dynamically adhesive substrates by incorporating a third, permanently nonadhesive region. Having three spatially and functionally distinct regions allows for the realization of more complex configurations of cellular cocultures as well as intricate interface geometries between two cell populations for diverse heterotypic cell-cell interaction studies. We can now achieve spatial control over the path and direction of migration in addition to temporal control of the onset of migration, enabling studies that better recapitulate coordinated multicellular migration and organization in vitro. We confirm that cellular behavior is unaltered on captured biotinylated fibronectin as compared to printed fibronectin by examining the cells' ability to spread, form adhesions, and migrate. We demonstrate the versatility of this approach in studies of migration and cellular cocultures, and further highlight its utility by probing Notch-Delta juxtacrine signaling at a patterned interface
Beschreibung:Date Completed 21.10.2014
Date Revised 21.03.2024
published: Print-Electronic
CommentIn: Nanomedicine (Lond). 2014 Apr;9(5):573-6
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la404037s