Evolution of a symbiotic receptor through gene duplications in the legume-rhizobium mutualism

© 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 201(2014), 3 vom: 29. Feb., Seite 961-972
1. Verfasser: De Mita, Stéphane (VerfasserIn)
Weitere Verfasser: Streng, Arend, Bisseling, Ton, Geurts, René
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Nod factors coevolution duplication legume-rhizobium symbiosis lipo-chitooligosaccharides (LCOs) molecular evolution neofunctionalization Lipopolysaccharides mehr... Plant Proteins lipid-linked oligosaccharides
Beschreibung
Zusammenfassung:© 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
The symbiosis between legumes and nitrogen-fixing rhizobia co-opted pre-existing endomycorrhizal features. In particular, both symbionts release lipo-chitooligosaccharides (LCOs) that are recognized by LysM-type receptor kinases. We investigated the evolutionary history of rhizobial LCO receptor genes MtLYK3-LjNFR1 to gain insight into the evolutionary origin of the rhizobial symbiosis. We performed a phylogenetic analysis integrating gene copies from nonlegumes and legumes, including the non-nodulating, phylogenetically basal legume Cercis chinensis. Signatures of differentiation between copies were investigated through patterns of molecular evolution. We show that two rounds of duplication preceded the evolution of the rhizobial symbiosis in legumes. Molecular evolution patterns indicate that the resulting three paralogous gene copies experienced different selective constraints. In particular, one copy maintained the ancestral function, and another specialized into perception of rhizobial LCOs. It has been suggested that legume LCO receptors evolved from a putative ancestral defense-related chitin receptor through the acquisition of two kinase motifs. However, the phylogenetic analysis shows that these domains are actually ancestral, suggesting that this scenario is unlikely. Our study underlines the evolutionary significance of gene duplication and subsequent neofunctionalization in MtLYK3-LjNFR1 genes. We hypothesize that their ancestor was more likely a mycorrhizal LCO receptor, than a defense-related receptor kinase
Beschreibung:Date Completed 01.09.2014
Date Revised 16.04.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.12549