A long-term nitrogen fertilizer gradient has little effect on soil organic matter in a high-intensity maize production system
© 2014 John Wiley & Sons Ltd.
Veröffentlicht in: | Global change biology. - 1999. - 20(2014), 4 vom: 01. Apr., Seite 1339-50 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2014
|
Zugriff auf das übergeordnete Werk: | Global change biology |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Fertilizers Soil Carbon 7440-44-0 Nitrogen N762921K75 |
Zusammenfassung: | © 2014 John Wiley & Sons Ltd. Global maize production alters an enormous soil organic C (SOC) stock, ultimately affecting greenhouse gas concentrations and the capacity of agroecosystems to buffer climate variability. Inorganic N fertilizer is perhaps the most important factor affecting SOC within maize-based systems due to its effects on crop residue production and SOC mineralization. Using a continuous maize cropping system with a 13 year N fertilizer gradient (0-269 kg N ha(-1) yr(-1)) that created a large range in crop residue inputs (3.60-9.94 Mg dry matter ha(-1) yr(-1)), we provide the first agronomic assessment of long-term N fertilizer effects on SOC with direct reference to N rates that are empirically determined to be insufficient, optimum, and excessive. Across the N fertilizer gradient, SOC in physico-chemically protected pools was not affected by N fertilizer rate or residue inputs. However, unprotected particulate organic matter (POM) fractions increased with residue inputs. Although N fertilizer was negatively linearly correlated with POM C/N ratios, the slope of this relationship decreased from the least decomposed POM pools (coarse POM) to the most decomposed POM pools (fine intra-aggregate POM). Moreover, C/N ratios of protected pools did not vary across N rates, suggesting little effect of N fertilizer on soil organic matter (SOM) after decomposition of POM. Comparing a N rate within 4% of agronomic optimum (208 kg N ha(-1) yr(-1)) and an excessive N rate (269 kg N ha(-1) yr(-1)), there were no differences between SOC amount, SOM C/N ratios, or microbial biomass and composition. These data suggest that excessive N fertilizer had little effect on SOM and they complement agronomic assessments of environmental N losses, that demonstrate N2 O and NO3 emissions exponentially increase when agronomic optimum N is surpassed |
---|---|
Beschreibung: | Date Completed 11.05.2015 Date Revised 18.03.2022 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1365-2486 |
DOI: | 10.1111/gcb.12519 |