Sex-related differences in lipid peroxidation and photoprotection in Pistacia lentiscus

Sex-related differences in the response of dioecious plants to abiotic stress have been poorly studied to date. This work explored to what extent sex may affect plant stress responses in Pistacia lentiscus L. (Anacardiaceae), a tree well adapted to Mediterranean climatic conditions. It was hypothesi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 65(2014), 4 vom: 20. März, Seite 1039-49
1. Verfasser: Juvany, Marta (VerfasserIn)
Weitere Verfasser: Müller, Maren, Pintó-Marijuan, Marta, Munné-Bosch, Sergi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Dioecy mastic tree (Pistacia lentiscus) oxidative stress photoprotection reproductive effort sexual dimorphism. Antioxidants Cytokinins Plant Growth Regulators mehr... Chlorophyll 1406-65-1 Lipoxygenase EC 1.13.11.12 alpha-Tocopherol H4N855PNZ1
Beschreibung
Zusammenfassung:Sex-related differences in the response of dioecious plants to abiotic stress have been poorly studied to date. This work explored to what extent sex may affect plant stress responses in Pistacia lentiscus L. (Anacardiaceae), a tree well adapted to Mediterranean climatic conditions. It was hypothesized that a greater reproductive effort in females may increase oxidative stress in leaves, particularly when plants are exposed to abiotic stress. Measurements of oxidative stress markers throughout the year revealed increased lipid peroxidation in females, but only during the winter. Enhanced lipid peroxidation in females was associated with reduced photoprotection, as indicated by reduced tocopherol levels and nonphotochemical quenching (NPQ) of chlorophyll fluorescence. Enhanced lipid peroxidation in females was also observed at predawn, which was associated with increased lipoxygenase activity and reduced cytokinin levels. An analysis of the differences between reproductive (R) and nonreproductive (NR) shoots showed an enhanced photoprotective capacity in R shoots compared to NR shoots in females. This capacity was characterized by an increased NPQ and a better antioxidant protection (increased carotenoid and tocopherol levels per unit of chlorophyll) in R compared to NR shoots. It is concluded that (i) females exhibit higher lipid peroxidation in leaves than males, but only during the winter (when sex-related differences in reproductive effort are the highest), (ii) this is associated with a lower photoprotective capacity at midday, as well as enhanced lipoxygenase activity and reduced cytokinin levels at predawn, and (iii) photoprotection capacity is higher in R relative to NR shoots in females
Beschreibung:Date Completed 04.11.2014
Date Revised 23.03.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/ert446