Rapid adaptation of some phytoplankton species to osmium as a result of spontaneous mutations

To understand the vulnerability of individual species to anthropogenic contamination, it is important to evaluate the different abilities of phytoplankton to respond to environmental changes induced by pollution. The ability of a species to adapt, rather than its initial tolerance, is the basis for...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology (London, England). - 1992. - 23(2014), 2 vom: 21. März, Seite 213-20
1. Verfasser: Marvá, Fernando (VerfasserIn)
Weitere Verfasser: García-Balboa, Camino, Baselga-Cervera, Beatriz, Costas, Eduardo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Ecotoxicology (London, England)
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Water Pollutants, Chemical Osmium 2E7M255OPY
Beschreibung
Zusammenfassung:To understand the vulnerability of individual species to anthropogenic contamination, it is important to evaluate the different abilities of phytoplankton to respond to environmental changes induced by pollution. The ability of a species to adapt, rather than its initial tolerance, is the basis for survival under rapidly increasing levels of anthropogenic contamination. High doses of osmium (Os) cause massive destruction of diverse phytoplankton groups. In this study, we found that the coastal chlorophyte Tetraselmis suecica and the continental chlorophyte Dictyosphaerium chlorelloides were able to adapt to a lethal dose of Os. In these species, Os-resistant cells arose as a result of rare spontaneous mutations (at rates of approximately 10(-6) mutants per cell division) that occurred before exposure to Os. The mutants remained in the microalgal populations by means of mutation-selection balance. The huge size of phytoplankton populations ensures that there are always enough Os-resistant mutants to guarantee the survival of the population under Os pollution. In contrast, we observed that neither a haptophyte species from open ocean regions nor a cyanobacterium from continental freshwater were able to adapt to the lethal Os dose. Adaptation of phytoplankton to Os contamination is relevant because industrial activities are leading to a rapid increase in Os pollution worldwide
Beschreibung:Date Completed 29.09.2014
Date Revised 21.10.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1573-3017
DOI:10.1007/s10646-013-1164-8