Polymer-based resistive memory materials and devices

© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 26(2014), 4 vom: 13. Jan., Seite 570-606
Auteur principal: Lin, Wen-Peng (Auteur)
Autres auteurs: Liu, Shu-Juan, Gong, Tao, Zhao, Qiang, Huang, Wei
Format: Article en ligne
Langue:English
Publié: 2014
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article Research Support, Non-U.S. Gov't charge transfer conjugated polymers functionalization of polymers memory mechanisms resistive memory
Description
Résumé:© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Due to the advantages of good scalability, flexibility, low cost, ease of processing, 3D-stacking capability, and large capacity for data storage, polymer-based resistive memories have been a promising alternative or supplementary devices to conventional inorganic semiconductor-based memory technology, and attracted significant scientific interest as a new and promising research field. In this review, we first introduced the general characteristics of the device structures and fabrication, memory effects, switching mechanisms, and effects of electrodes on memory properties associated with polymer-based resistive memory devices. Subsequently, the research progress concerning the use of single polymers or polymer composites as active materials for resistive memory devices has been summarized and discussed. In particular, we consider a rational approach to their design and discuss how to realize the excellent memory devices and understand the memory mechanisms. Finally, the current challenges and several possible future research directions in this field have also been discussed
Description:Date Completed 10.09.2014
Date Revised 30.09.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201302637