LEADER 01000caa a22002652 4500
001 NLM233596127
003 DE-627
005 20250216105022.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jplph.2013.09.011  |2 doi 
028 5 2 |a pubmed25n0778.xml 
035 |a (DE-627)NLM233596127 
035 |a (NLM)24331425 
035 |a (PII)S0176-1617(13)00398-2 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mathieu, Anne-Sophie  |e verfasserin  |4 aut 
245 1 0 |a High temperatures limit plant growth but hasten flowering in root chicory (Cichorium intybus) independently of vernalisation 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.09.2014 
500 |a Date Revised 09.01.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2013 Elsevier GmbH. All rights reserved. 
520 |a An increase in mean and extreme summer temperatures is expected as a consequence of climate changes and this might have an impact on plant development in numerous species. Root chicory (Cichorium intybus L.) is a major crop in northern Europe, and it is cultivated as a source of inulin. This polysaccharide is stored in the tap root during the first growing season when the plant grows as a leafy rosette, whereas bolting and flowering occur in the second year after winter vernalisation. The impact of heat stress on plant phenology, water status, photosynthesis-related parameters, and inulin content was studied in the field and under controlled phytotron conditions. In the field, plants of the Crescendo cultivar were cultivated under a closed plastic-panelled greenhouse to investigate heat-stress conditions, while the control plants were shielded with a similar, but open, structure. In the phytotrons, the Crescendo and Fredonia cultivars were exposed to high temperatures (35°C day/28°C night) and compared to control conditions (17°C) over 10 weeks. In the field, heat reduced the root weight, the inulin content of the root and its degree of polymerisation in non-bolting plants. Flowering was observed in 12% of the heat stressed plants during the first growing season in the field. In the phytotron, the heat stress increased the total number of leaves per plant, but reduced the mean leaf area. Photosynthesis efficiency was increased in these plants, whereas osmotic potential was decreased. High temperature was also found to induced flowering of up to 50% of these plants, especially for the Fredonia cultivar. In conclusion, high temperatures induced a reduction in the growth of root chicory, although photosynthesis is not affected. Flowering was also induced, which indicates that high temperatures can partly substitute for the vernalisation requirement for the flowering of root chicory 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a 1-FEH 
650 4 |a 1-FFT 
650 4 |a 1-kestose fructan:fructan 1-fructosyltransferase (EC 2.4.1.100) 
650 4 |a A 
650 4 |a Chla 
650 4 |a Chlb 
650 4 |a CiFL1 
650 4 |a Cichorium intybus 
650 4 |a Cichorium intybus FLC-LIKE1 
650 4 |a DP 
650 4 |a DW 
650 4 |a E 
650 4 |a FLC 
650 4 |a FLM 
650 4 |a FLOWERING LOCUS C 
650 4 |a FLOWERING LOCUS M 
650 4 |a FM2 
650 4 |a FW 
650 4 |a Flowering 
650 4 |a Fs 
650 4 |a High temperatures 
650 4 |a IP 
650 4 |a Inulin 
650 4 |a NPQ 
650 4 |a PAR 
650 4 |a Root chicory 
650 4 |a WC 
650 4 |a chlorophyll a 
650 4 |a chlorophyll b 
650 4 |a dry weight 
650 4 |a fluorescence monitoring system II 
650 4 |a fresh weight 
650 4 |a fructan 1-exohydrolase (EC 3.2.1.153) 
650 4 |a g(s) 
650 4 |a instantaneous CO(2) assimilation 
650 4 |a instantaneous transpiration 
650 4 |a inulin percentage 
650 4 |a leaf stomatal conductance 
650 4 |a mean inulin degree of polymerisation 
650 4 |a non-photochemical-quenching 
650 4 |a osmotic potential 
650 4 |a photochemical quenching 
650 4 |a photosynthetically active radiation 
650 4 |a photosystemII efficiency 
650 4 |a qP 
650 4 |a steady state level of fluorescence 
650 4 |a water content 
650 4 |a Ψs 
650 4 |a φ(PSII) 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
700 1 |a Lutts, Stanley  |e verfasserin  |4 aut 
700 1 |a Vandoorne, Bertrand  |e verfasserin  |4 aut 
700 1 |a Descamps, Christophe  |e verfasserin  |4 aut 
700 1 |a Périlleux, Claire  |e verfasserin  |4 aut 
700 1 |a Dielen, Vincent  |e verfasserin  |4 aut 
700 1 |a Van Herck, Jean-Claude  |e verfasserin  |4 aut 
700 1 |a Quinet, Muriel  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of plant physiology  |d 1979  |g 171(2014), 2 vom: 15. Jan., Seite 109-18  |w (DE-627)NLM098174622  |x 1618-1328  |7 nnns 
773 1 8 |g volume:171  |g year:2014  |g number:2  |g day:15  |g month:01  |g pages:109-18 
856 4 0 |u http://dx.doi.org/10.1016/j.jplph.2013.09.011  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 171  |j 2014  |e 2  |b 15  |c 01  |h 109-18