Phosphorus deficiency enhances aluminum tolerance of rice (Oryza sativa) by changing the physicochemical characteristics of root plasma membranes and cell walls

Copyright © 2013 Elsevier GmbH. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology. - 1979. - 171(2014), 2 vom: 15. Jan., Seite 9-15
1. Verfasser: Maejima, Eriko (VerfasserIn)
Weitere Verfasser: Watanabe, Toshihiro, Osaki, Mitsuru, Wagatsuma, Tadao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Journal of plant physiology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Aluminum tolerance BHT DGDG Galactolipid HC Low calcium tolerance MDA MGDG mehr... Oryza sativa PM Pectin Phospholipid Phosphorus deficiency Plasma membrane TBARS butylated hydroxytoluene digalactosylgiacylglycerol hemicellulose malondialdehyde monogalactosylgiacylglycerol plasma membrane thiobarbituric acid reactive substance Phosphorus 27YLU75U4W Aluminum CPD4NFA903 Calcium SY7Q814VUP
LEADER 01000naa a22002652 4500
001 NLM233596011
003 DE-627
005 20231224095440.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jplph.2013.09.012  |2 doi 
028 5 2 |a pubmed24n0778.xml 
035 |a (DE-627)NLM233596011 
035 |a (NLM)24331414 
035 |a (PII)S0176-1617(13)00399-4 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Maejima, Eriko  |e verfasserin  |4 aut 
245 1 0 |a Phosphorus deficiency enhances aluminum tolerance of rice (Oryza sativa) by changing the physicochemical characteristics of root plasma membranes and cell walls 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.09.2014 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2013 Elsevier GmbH. All rights reserved. 
520 |a The negative charge at the root surface is mainly derived from the phosphate group of phospholipids in plasma membranes (PMs) and the carboxyl group of pectins in cell walls, which are usually neutralized by calcium (Ca) ions contributing to maintain the root integrity. The major toxic effect of aluminum (Al) in plants is the inhibition of root elongation due to Al binding tightly to these negative sites in exchange for Ca. Because phospholipid and pectin concentrations decrease in roots of some plant species under phosphorus (P)-limiting conditions, we hypothesized that rice (Oryza sativa L.) seedlings grown under P-limiting conditions would demonstrate enhanced Al tolerance because of their fewer sites on their roots. For pretreatment, rice seedlings were grown in a culture solution with (+P) or without (-P) P. Thereafter, the seedlings were transferred to a solution with or without Al, and the lipid, pectin, hemicellulose, and mineral concentrations as well as Al tolerance were then determined. Furthermore, the low-Ca tolerance of P-pretreated seedlings was investigated under different pH conditions. The concentrations of phospholipids and pectins in the roots of rice receiving -P pretreatment were lower than those receiving +P pretreatment. As expected, seedlings receiving the -P pretreatment showed enhanced Al tolerance, accompanied by the decrease in Al accumulation in their roots and shoots. This low P-induced enhanced Al tolerance was not explained by enhanced antioxidant activities or organic acid secretion from roots but by the decrease in phospholipid and pectin concentrations in the roots. In addition, low-Ca tolerance of the roots was enhanced by the -P pretreatment under low pH conditions. This low P-induced enhancement of low-Ca tolerance may be related to the lower Ca requirement to maintain PM and cell wall structures in roots of rice with fewer phospholipids and pectins 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Aluminum tolerance 
650 4 |a BHT 
650 4 |a DGDG 
650 4 |a Galactolipid 
650 4 |a HC 
650 4 |a Low calcium tolerance 
650 4 |a MDA 
650 4 |a MGDG 
650 4 |a Oryza sativa 
650 4 |a PM 
650 4 |a Pectin 
650 4 |a Phospholipid 
650 4 |a Phosphorus deficiency 
650 4 |a Plasma membrane 
650 4 |a TBARS 
650 4 |a butylated hydroxytoluene 
650 4 |a digalactosylgiacylglycerol 
650 4 |a hemicellulose 
650 4 |a malondialdehyde 
650 4 |a monogalactosylgiacylglycerol 
650 4 |a plasma membrane 
650 4 |a thiobarbituric acid reactive substance 
650 7 |a Phosphorus  |2 NLM 
650 7 |a 27YLU75U4W  |2 NLM 
650 7 |a Aluminum  |2 NLM 
650 7 |a CPD4NFA903  |2 NLM 
650 7 |a Calcium  |2 NLM 
650 7 |a SY7Q814VUP  |2 NLM 
700 1 |a Watanabe, Toshihiro  |e verfasserin  |4 aut 
700 1 |a Osaki, Mitsuru  |e verfasserin  |4 aut 
700 1 |a Wagatsuma, Tadao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of plant physiology  |d 1979  |g 171(2014), 2 vom: 15. Jan., Seite 9-15  |w (DE-627)NLM098174622  |x 1618-1328  |7 nnns 
773 1 8 |g volume:171  |g year:2014  |g number:2  |g day:15  |g month:01  |g pages:9-15 
856 4 0 |u http://dx.doi.org/10.1016/j.jplph.2013.09.012  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 171  |j 2014  |e 2  |b 15  |c 01  |h 9-15