Direct thiol-ene photocoating of polyorganosiloxane microparticles
This work presents the modification of polyorganosiloxane microparticles by surface-initiated thiol-ene photochemistry. By this photocoating, we prepared different core/shell particles with a polymeric shell within narrow size distributions (PDI = 0.041-0.12). As core particle, we used highly monodi...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 29(2013), 52 vom: 31. Dez., Seite 16119-26 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2013
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | This work presents the modification of polyorganosiloxane microparticles by surface-initiated thiol-ene photochemistry. By this photocoating, we prepared different core/shell particles with a polymeric shell within narrow size distributions (PDI = 0.041-0.12). As core particle, we used highly monodisperse spherical polyorganosiloxane particles prepared from (3-mercaptopropyl)trimethoxysilane (MPTMS) with a radius of 0.49 μm. We utilize the high surface coverage of mercaptopropyl functions to generate surface-localized radicals upon irradiation with UVA-light without additional photoinitiator. The continuous generation of radicals was followed by a dye degradation experiment (UV/vis spectroscopy). Surface-localized radicals were used as copolymer anchoring sites ("grafting-onto" deposition of different PB-b-PS diblock copolymers) and polymerization initiators ("grafting-from" polymerization of PS). Photocoated particles were characterized for their morphology (SEM, TEM), size, and size distribution (DLS). For PS-coated particles, the polymer content (up to 24% in 24 h) was controlled by the polymerization time upon UVA exposure. The coating thickness was evaluated by thermogravimetric analysis (TGA) using a simple analytical core/shell model. Raman spectroscopy was applied to directly follow the time-dependent consumption of thiols by photoinitiation |
---|---|
Beschreibung: | Date Completed 27.08.2014 Date Revised 31.12.2013 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la4039864 |