Assessment of water droplet evaporation mechanisms on hydrophobic and superhydrophobic substrates

Evaporation rates are predicted and important transport mechanisms identified for evaporation of water droplets on hydrophobic (contact angle ~110°) and superhydrophobic (contact angle ~160°) substrates. Analytical models for droplet evaporation in the literature are usually simplified to include on...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 29(2013), 51 vom: 23. Dez., Seite 15831-41
1. Verfasser: Pan, Zhenhai (VerfasserIn)
Weitere Verfasser: Dash, Susmita, Weibel, Justin A, Garimella, Suresh V
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM233495231
003 DE-627
005 20231224095232.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1021/la4045286  |2 doi 
028 5 2 |a pubmed24n0778.xml 
035 |a (DE-627)NLM233495231 
035 |a (NLM)24320680 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pan, Zhenhai  |e verfasserin  |4 aut 
245 1 0 |a Assessment of water droplet evaporation mechanisms on hydrophobic and superhydrophobic substrates 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.08.2014 
500 |a Date Revised 23.12.2013 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Evaporation rates are predicted and important transport mechanisms identified for evaporation of water droplets on hydrophobic (contact angle ~110°) and superhydrophobic (contact angle ~160°) substrates. Analytical models for droplet evaporation in the literature are usually simplified to include only vapor diffusion in the gas domain, and the system is assumed to be isothermal. In the comprehensive model developed in this study, evaporative cooling of the interface is accounted for, and vapor concentration is coupled to local temperature at the interface. Conjugate heat and mass transfer are solved in the solid substrate, liquid droplet, and surrounding gas. Buoyancy-driven convective flows in the droplet and vapor domains are also simulated. The influences of evaporative cooling and convection on the evaporation characteristics are determined quantitatively. The liquid-vapor interface temperature drop induced by evaporative cooling suppresses evaporation, while gas-phase natural convection acts to enhance evaporation. While the effects of these competing transport mechanisms are observed to counterbalance for evaporation on a hydrophobic surface, the stronger influence of evaporative cooling on a superhydrophobic surface accounts for an overprediction of experimental evaporation rates by ~20% with vapor diffusion-based models. The local evaporation fluxes along the liquid-vapor interface for both hydrophobic and superhydrophobic substrates are investigated. The highest local evaporation flux occurs at the three-phase contact line region due to proximity to the higher temperature substrate, rather than at the relatively colder droplet top; vapor diffusion-based models predict the opposite. The numerically calculated evaporation rates agree with experimental results to within 2% for superhydrophobic substrates and 3% for hydrophobic substrates. The large deviations between past analytical models and the experimental data are therefore reconciled with the comprehensive model developed here 
650 4 |a Journal Article 
700 1 |a Dash, Susmita  |e verfasserin  |4 aut 
700 1 |a Weibel, Justin A  |e verfasserin  |4 aut 
700 1 |a Garimella, Suresh V  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 29(2013), 51 vom: 23. Dez., Seite 15831-41  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:29  |g year:2013  |g number:51  |g day:23  |g month:12  |g pages:15831-41 
856 4 0 |u http://dx.doi.org/10.1021/la4045286  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 29  |j 2013  |e 51  |b 23  |c 12  |h 15831-41