Growth and stabilization of silver nanoparticles on carbon dots and sensing application
Carbon dots (C-dots) have been proven to show the capability for direct reduction of Ag(+) to elemental silver (Ag(0)) without additional reducing agent or external photoirradiation by incubating Ag(+) with C-dots for 5 min in a water bath at 50 °C. Silver nanoparticles (Ag-NPs) are simultaneously f...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 29(2013), 52 vom: 31. Dez., Seite 16135-40 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2013
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Reducing Agents Silver 3M4G523W1G Carbon 7440-44-0 |
Zusammenfassung: | Carbon dots (C-dots) have been proven to show the capability for direct reduction of Ag(+) to elemental silver (Ag(0)) without additional reducing agent or external photoirradiation by incubating Ag(+) with C-dots for 5 min in a water bath at 50 °C. Silver nanoparticles (Ag-NPs) are simultaneously formed with an average size of 3.1 ± 1.5 nm and grew on carbon dots. This process involves the oxidation of amine or phenol hydroxyl groups on the aromatic ring of C-dots. Meanwhile C-dots protect and stabilize the Ag-NPs from aggregation in aqueous medium; that is, the Ag-NPs are stable at least for 45 days in aqueous medium. The formed Ag-NPs cause significant resonance light scattering (RLS), which correlates closely with the concentration of silver cation, and this facilitates quantitative detection of silver in aqueous medium |
---|---|
Beschreibung: | Date Completed 27.08.2014 Date Revised 31.12.2013 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la404270w |