Camera model identification based on the heteroscedastic noise model

The goal of this paper is to design a statistical test for the camera model identification problem. The approach is based on the heteroscedastic noise model, which more accurately describes a natural raw image. This model is characterized by only two parameters, which are considered as unique finger...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 1 vom: 16. Jan., Seite 250-63
1. Verfasser: Thai, Thanh Hai (VerfasserIn)
Weitere Verfasser: Cogranne, Rémi, Retraint, Florent
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM232726086
003 DE-627
005 20250216064221.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
028 5 2 |a pubmed25n0775.xml 
035 |a (DE-627)NLM232726086 
035 |a (NLM)24240001 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Thai, Thanh Hai  |e verfasserin  |4 aut 
245 1 0 |a Camera model identification based on the heteroscedastic noise model 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.09.2014 
500 |a Date Revised 31.01.2014 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a The goal of this paper is to design a statistical test for the camera model identification problem. The approach is based on the heteroscedastic noise model, which more accurately describes a natural raw image. This model is characterized by only two parameters, which are considered as unique fingerprint to identify camera models. The camera model identification problem is cast in the framework of hypothesis testing theory. In an ideal context where all model parameters are perfectly known, the likelihood ratio test (LRT) is presented and its performances are theoretically established. For a practical use, two generalized LRTs are designed to deal with unknown model parameters so that they can meet a prescribed false alarm probability while ensuring a high detection performance. Numerical results on simulated images and real natural raw images highlight the relevance of the proposed approach 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Cogranne, Rémi  |e verfasserin  |4 aut 
700 1 |a Retraint, Florent  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 1 vom: 16. Jan., Seite 250-63  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:1  |g day:16  |g month:01  |g pages:250-63 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 1  |b 16  |c 01  |h 250-63