3D visual activity assessment based on natural scene statistics

One of the most challenging ongoing issues in the field of 3D visual research is how to perceptually quantify object and surface visualizations that are displayed within a virtual 3D space between a human eye and 3D display. To seek an effective method of quantification, it is necessary to measure v...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 1 vom: 16. Jan., Seite 450-65
1. Verfasser: Lee, Kwanghyun (VerfasserIn)
Weitere Verfasser: Moorthy, Anush Krishna, Lee, Sanghoon, Bovik, Alan Conrad
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:One of the most challenging ongoing issues in the field of 3D visual research is how to perceptually quantify object and surface visualizations that are displayed within a virtual 3D space between a human eye and 3D display. To seek an effective method of quantification, it is necessary to measure various elements related to the perception of 3D objects at different depths. We propose a new framework for quantifying 3D visual information that we call 3D visual activity (3DVA), which utilizes natural scene statistics measured over 3D visual coordinates. We account for important aspects of 3D perception by carrying out a 3D coordinate transform reflecting the nonuniform sampling resolution of the eye and the process of stereoscopic fusion. The 3DVA utilizes the empirical distortions of wavelet coefficients to a parametric generalized Gaussian probability distribution model and a set of 3D perceptual weights. We conducted a series of simulations that demonstrate the effectiveness of the 3DVA for quantifying the statistical dynamics of visual 3D space with respect to disparity, motion, texture, and color. A successful example application is also provided, whereby 3DVA is applied to the problem of predicting visual fatigue experienced when viewing 3D displays
Beschreibung:Date Completed 23.09.2014
Date Revised 31.01.2014
published: Print
Citation Status MEDLINE
ISSN:1941-0042