Acquisition and diversification of tendrilled leaves in Bignonieae (Bignoniaceae) involved changes in expression patterns of SHOOTMERISTEMLESS (STM), LEAFY/FLORICAULA (LFY/FLO), and PHANTASTICA (PHAN)

© 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 201(2014), 3 vom: 12. Feb., Seite 993-1008
1. Verfasser: Sousa-Baena, Mariane Silveira (VerfasserIn)
Weitere Verfasser: Lohmann, Lúcia G, Rossi, Magdalena, Sinha, Neelima R
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Bignoniaceae LEAFY/FLORICAULA PHANTASTICA SHOOTMERISTEMLESS gene expression patterns leaf tendrils lianas mehr... morphological character evolution Plant Proteins
Beschreibung
Zusammenfassung:© 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Leaves have undergone structural modifications over evolutionary time, and presently exist in many forms. For instance, in Fabaceae and Bignoniaceae, leaf parts can be modified into tendrils. Currently, no data are available on genic control of tendrilled leaf development outside Fabaceae. Here, we conducted a detailed study of three representatives of Bignonieae: Amphilophium buccinatorium, Dolichandra unguis-cati, and Bignonia callistegioides, bearing multifid, trifid, and simple-tendrilled leaves, respectively. We investigated the structure of their petioles, petiolules, leaflets, and tendrils through histological analyses. Additionally, the expression of SHOOTMERISTEMLESS (STM), PHANTASTICA (PHAN), and LEAFY/FLORICAULA (LFY/FLO) during leaf development was analyzed by in situ hybridizations. Tendrils share some anatomical similarities with leaflets, but not with other leaf parts. Transcripts of both STM and LFY/FLO were detected in leaf primordia, associated with regions from which leaflets and tendril branches originate. PHAN expression was found to be polarized in branched tendrils, but not in simple tendrils. In Bignonieae, tendrils are modified leaflets that, as a result of premature completion of development, become bladeless organs. Bignonieae leaves develop differently from those of peas, as both LFY/FLO and STM are expressed in developing leaves of Bignonieae. Moreover, PHAN is probably involved in tendril diversification in Bignonieae, as it has distinct expression patterns in different leaf types
Beschreibung:Date Completed 01.09.2014
Date Revised 16.04.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.12582