|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM232643857 |
003 |
DE-627 |
005 |
20240323232719.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2014 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1093/jxb/ert367
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1342.xml
|
035 |
|
|
|a (DE-627)NLM232643857
|
035 |
|
|
|a (NLM)24231035
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Matimati, Ignatious
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients
|
264 |
|
1 |
|c 2014
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 26.09.2014
|
500 |
|
|
|a Date Revised 23.03.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Transpiration may enhance mass-flow of nutrients to roots, especially in low-nutrient soils or where the root system is not extensively developed. Previous work suggested that nitrogen (N) may regulate mass-flow of nutrients. Experiments were conducted to determine whether N regulates water fluxes, and whether this regulation has a functional role in controlling the mass-flow of nutrients to roots. Phaseolus vulgaris were grown in troughs designed to create an N availability gradient by restricting roots from intercepting a slow-release N source, which was placed at one of six distances behind a 25 μm mesh from which nutrients could move by diffusion or mass-flow (termed 'mass-flow' treatment). Control plants had the N source supplied directly to their root zone so that N was available through interception, mass-flow, and diffusion (termed 'interception' treatment). 'Mass-flow' plants closest to the N source exhibited 2.9-fold higher transpiration (E), 2.6-fold higher stomatal conductance (gs), 1.2-fold higher intercellular [CO2] (Ci), and 3.4-fold lower water use efficiency than 'interception' plants, despite comparable values of photosynthetic rate (A). E, gs, and Ci first increased and then decreased with increasing distance from the N source to values even lower than those of 'interception' plants. 'Mass-flow' plants accumulated phosphorus and potassium, and had maximum concentrations at 10mm from the N source. Overall, N availability regulated transpiration-driven mass-flow of nutrients from substrate zones that were inaccessible to roots. Thus when water is available, mass-flow may partially substitute for root density in providing access to nutrients without incurring the costs of root extension, although the efficacy of mass-flow also depends on soil nutrient retention and hydraulic properties
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Interception
|
650 |
|
4 |
|a phosphate
|
650 |
|
4 |
|a potassium
|
650 |
|
4 |
|a urea
|
650 |
|
4 |
|a water flux
|
650 |
|
4 |
|a water use efficiency.
|
650 |
|
7 |
|a Soil
|2 NLM
|
650 |
|
7 |
|a Water
|2 NLM
|
650 |
|
7 |
|a 059QF0KO0R
|2 NLM
|
650 |
|
7 |
|a Carbon Dioxide
|2 NLM
|
650 |
|
7 |
|a 142M471B3J
|2 NLM
|
650 |
|
7 |
|a Phosphorus
|2 NLM
|
650 |
|
7 |
|a 27YLU75U4W
|2 NLM
|
650 |
|
7 |
|a Nitrogen
|2 NLM
|
650 |
|
7 |
|a N762921K75
|2 NLM
|
650 |
|
7 |
|a Potassium
|2 NLM
|
650 |
|
7 |
|a RWP5GA015D
|2 NLM
|
700 |
1 |
|
|a Verboom, G Anthony
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cramer, Michael D
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of experimental botany
|d 1985
|g 65(2014), 1 vom: 13. Jan., Seite 159-68
|w (DE-627)NLM098182706
|x 1460-2431
|7 nnns
|
773 |
1 |
8 |
|g volume:65
|g year:2014
|g number:1
|g day:13
|g month:01
|g pages:159-68
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1093/jxb/ert367
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 65
|j 2014
|e 1
|b 13
|c 01
|h 159-68
|